[1]SHAO J W, XUE S, YU G L, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Science Translational Medicine, 2017, 9(387): eaal22989.
[2]DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759.
[3]SWOFFORD C A, VAN DESSEL N, FORBES N S. Quorum-sensing Salmonella selectively trigger protein expression within tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3457-3462.
[4]UTHOFF S, BROKER D, STEINBUCHEL A. Current state and perspectives of producing biodiesel-like compounds by biotechnology[J]. Microbial Biotechnology, 2009, 2(5): 551-565.
[5]LI H, CANN A F, LIAO J C. Biofuels: Biomolecular engineering fundamentals and advances[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 19-36.
[6]SCHIRMER A, RUDE M A, LI X Z, et al. Microbial biosynthesis of alkanes[J]. Science, 2010, 329(5991): 559-562.
[7]NAWABI P, BAUER S, KYRPIDES N, et al. Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase[J]. Applied and Environmental Microbiology, 2011, 77(22): 8052-8061.
[8]AKHTAR M K, TURNER N J, JONES P R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 87-92.
[9]LENNEN R M, PFLEGER B F. Engineering Escherichia coli to synthesize free fatty acids[J]. Trends in Biotechnology, 2012, 30(12): 659-667.
[10]PRATHER K L, MARTIN C H. De novo biosynthetic pathways: Rational design of microbial chemical factories[J]. Current Opinion in Biotechnology, 2008, 19(5): 468-474.
[11]NA D, KIM T Y, LEE S Y. Construction and optimization of synthetic pathways in metabolic engineering[J]. Currrent Opinion in Microbiology, 2010, 13(3): 363-370.
[12]CHEN G T, INOUYE M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli[J]. Genes & Development, 1994, 8(21): 2641-2652.
[13]KANAYA S, YAMADA Y, KINOUCHI M, et al. Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis[J]. Journal of Molecular Evolution, 2001, 53(4/5): 290-298.
[14]LAKEY D L, VOLADRI R K, EDWARDS K M, et al. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons[J]. Infection and Immunity, 2000, 68(1): 233-238.
[15]STENSTROM C M, JIN H N, MAJOR L L, et al. Codon bias at the 3′-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli[J]. Gene, 2001, 263(1/2): 273-284.
[16]THANGADURAI C, SUTHAKARAN P, BARFAL P, et al. Rare codon priority and its position specificity at the 5′ of the gene modulates heterologous protein expression in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 2008, 376(4): 647-652.
[17]ZHANG L Q, XUE P, ZHANG H J. Overexpression in Escherichia coli, purification and characterization of Thermoanaerobacter tengcongensis elongation factor G with multiple rare codons[J]. Protein and Peptide Letters, 2007, 14(8): 804-810.
[18]WANG Y, LI C Y, KHAN M R I, et al. An engineered rare codon device for optimization of metabolic pathways[J]. Scientific Reports, 2016, 6: 20608.
[19]YU X Y, LIU T G, ZHU F Y, et al. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(46): 18643-18648.
[20]LEE H, DELOACHE W C, DUEBER J E. Spatial organization of enzymes for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 242-251.
[21]BAEK J M, MAZUMDAR S, LEE S W, et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10): 2790-2794.
[22]HIRAKAWA H, HAGA T, NAGAMUNE T. Artificial protein complexes for biocatalysis[J]. Topics in Catalysis, 2012, 55(16/17/18): 1124-1137.
[23]PROSCHEL M, DETSCH R, BOCCACCINI A R, et al. Engineering of metabolic pathways by artificial enzyme channels[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 1-13.
[24]WANG Y, WU Y Q, SUO Y, et al. Clustering enzymes using E.coli inner cell membrane as scaffold in metabolic pathway[EB/OL]. (2017-12-25) [2018-04-15]. https://doi.org/10.1101/230425.
[25]PAILLER J, AUCHER W, PIRES M, et al. Phosphatidylglycerol: Prolipoprotein Diacylglyceryl Transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane[J]. Journal of Bacteriology, 2012, 194(9): 2142-2151.
[26]SCHIERLE C F, BERKMEN M, HUBER D, et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway[J]. Journal of Bacteriology, 2003, 185(19): 5706-5713.
[27]SKRETAS G, GEORGIOU G. Simple genetic selection protocol for isolation of overexpressed genes that enhance accumulation of membrane-integrated human G protein-coupled receptors in Escherichia coli[J]. Applied and Environmental Microbiology, 2010, 76(17): 5852-5859.
[28]AFRIN S,KHAN M R I,ZHANG W Y, et al. Membrane-located expression of thioesterase from Acinetobacter baylyi enhances free fatty acid production with decreased toxicity in Synechocystis sp. PCC6803[J]. Frontiers in Microbiology, 2018, 9: 02842.
[29]GUO H S, FEI J F, XIE Q, et al. A chemical-regulated inducible RNAi system in plants[J]. The Plant Journal, 2003, 34(3): 383-392.
[30]KONERMANN S, BRIGHAM M D, TREVINO A, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476.
[31]OHLENDORF R, VIDAVSKI R R, ELDAR A, et al. From dusk till dawn: One-plasmid systems for light-regulated gene expression[J]. Journal of Molecular Biology, 2012, 416(4): 534-542.
[32]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
[33]WU H, WANG Y, WANG Y, et al. Quantitatively relating gene expression to light intensity via the serial connection of blue light sensor and CRISPRi[J]. ACS Synthetic Biology, 2014, 3(12): 979-982. |