上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (9): 1038-1043.doi: 10.16183/j.cnki.jsjtu.2018.09.005
顾娟,黄荣宗,刘振宇,吴慧英
发布日期:
2025-07-02
通讯作者:
吴慧英,女,教授,博士生导师,电话(Tel.):021-34205299;E-mail: whysrj@sjtu.edu.cn.
作者简介:
顾娟(1989-),女,江苏省南通市人,硕士生,主要研究方向为微尺度气体流动传热特性.
基金资助:
GU Juan,HUANG Rongzong,LIU Zhenyu,WU Huiying
Published:
2025-07-02
摘要: 构建了微尺度条件下含黏性热耗散和压力功的总能形式的双分布函数格子Boltzmann (LB)模型,计算并分析了恒壁温与恒热流边界条件下,稀薄效应对速度驱动的平直微通道内气体流动与传热特性的影响.结果表明:在不同的热边界条件下,稀薄效应对微通道内气体流动特性的影响一致,即均使得气体流速增大,通道摩擦系数减小;由于气体温度场分布的差异,使得稀薄效应对气体传热特性的影响截然不同,在恒壁温边界条件下气体传热特性有所提高,而在恒热流边界条件下气体传热特性有所减弱.
中图分类号:
顾娟,黄荣宗,刘振宇,吴慧英. 不同热边界条件下微通道内气体的流动与传热特性[J]. 上海交通大学学报, 2018, 52(9): 1038-1043.
GU Juan,HUANG Rongzong,LIU Zhenyu,WU Huiying. Gaseous Flow and Heat Transfer Characteristic in a Microchannel with Different Thermal Boundary Conditions[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1038-1043.
[1]WANG J, CHEN L, KANG Q J, et al. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: A review[J]. International Journal of Heat and Mass Transfer, 2016, 95: 94-108. [2]VERSTRAETE D, BOWKETT C. Impact of heat transfer on the performance of micro gas turbines[J]. Applied Energy, 2015, 138: 445-449. [3]TZENG T H, KUO C Y, WANG S Y, et al. A portable micro gas chromatography system for lung cancer associated volatile organic compound detection[J]. IEEE Journal of Solid-State Circuits, 2016, 51(1): 259-272. [4]KAVEHPOUR H P, FAGHRI M, ASAKO Y. Effects of compressibility and rarefaction on gaseous flows in microchannels[J]. Numerical Heat Transfer, 1997, 32(7): 677-696. [5]HADDOUT Y, LAHJOMRI J. The extended Graetz problem for a gaseous slip flow in micropipe and parallel-plate microchannel with heating section of finite length: Effects of axial conduction, viscous dissipation and pressure work[J]. International Journal of Heat and Mass Transfer, 2015, 80: 673-687. [6]RAHIMI B, NIAZMAND H. Effects of high-order slip/jump, thermal creep, and variable thermophysical properties on natural convection in microchannels with constant wall heat fluxes[J]. Heat Transfer Engineering, 2014, 35(18): 1528-1538. [7]SUN Z, JALURIA Y. Convective heat transfer in pressure-driven nitrogen slip flows in long microchannels: The effects of pressure work and viscous dissipation[J]. International Journal of Heat and Mass Transfer, 2012, 55(13): 3488-3497. [8]LIU X L, GUO Z L. A lattice Boltzmann study of gas flows in a long micro-channel[J]. Computers & Mathematics with Applications, 2013, 65(2): 186-193. [9]YASUOKA H, KANEDA M, SUGA K. Thermal lattice Boltzmann method for complex microflows[J]. Physical Review E, 2016, 94(1): 013102. [10]TIAN Z W, ZOU C, LIU H J, et al. Lattice Boltzmann scheme for simulating thermal micro-flow[J]. Physica A: Statistical Mechanics and its Applications, 2007, 385(1): 59-68. [11]GOKALTUN S, DULIKRAVICH G S. Lattice Boltzmann method for rarefied channel flows with heat transfer[J]. International Journal of Heat and Mass Transfer, 2014, 78: 796-804. [12]GUO Z, ZHENG C, SHI B, et al. Thermal lattice Boltzmann equation for low mach number flows: Decoupling model[J]. Physical Review E, 2007, 75(3): 036704. [13]GUO Z, ZHENG C, SHI B. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6): 2007-2010. |
[1] | 李凡1, 陆高锋1, 丁云霄2, 郑春元2, 李斌2, 翟晓强1. 循环加热式空气源热泵热水器的性能及优化[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 179-187. |
[2] | 叶振鸿1, 王炜2, 李新华2, 陈江平1. 综述:微通道换热器的防冻技术[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 161-178. |
[3] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[4] | 马磊,谷波,田镇,李萍. 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报, 2017, 51(9): 1043-1049. |
[5] | 李沛晔,都晓慧,胡延东,赵社戌. 微通道中细胞转动对其化学微环境的影响[J]. 上海交通大学学报(自然版), 2016, 50(02): 283-287. |
[6] | 陈彦君,李元阳,刘振华. 固-液接触角对池内核态沸腾换热特性的影响[J]. 上海交通大学学报(自然版), 2015, 49(01): 135-140. |
[7] | 屈健,王谦,何志霞,韩新月,胡自成,刘涛,王超. 矩形微通道内液滴产生和运动特性实验研究[J]. 上海交通大学学报(自然版), 2015, 49(01): 86-90. |
[8] | 方继华1,谷波1,田镇1,赵鹏程2. 制冷剂侧结构对多元微通道平行流冷凝器传热与流动性能的影响[J]. 上海交通大学学报(自然版), 2014, 48(09): 1315-1322. |
[9] | 贾洪伟1,张鹏1,郭涛2,付鑫3,江世臣3. 微通道热沉内液氮的流动沸腾换热实验[J]. 上海交通大学学报(自然版), 2014, 48(09): 1274-1278. |
[10] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[11] | 龚帅,郑平. 液滴在非均匀润湿表面上的动力行为[J]. 上海交通大学学报(自然版), 2014, 48(02): 239-244. |
[12] | 张萍1,谷波1,王婷1,赵鹏程2,马洪涛2. 多元微通道平行流冷凝器理论模型与实验研究[J]. 上海交通大学学报(自然版), 2013, 47(11): 1738-1744. |
[13] | 季丽娜,胡延东,李沛晔. 微通道中细胞平动对其周围化学微环境的影响[J]. 上海交通大学学报(自然版), 2013, 47(10): 1520-1524. |
[14] | 梁媛媛, 赵宇, 陈江平. 微通道平行流蒸发器仿真模型[J]. 上海交通大学学报(自然版), 2013, 47(03): 413-416. |
[15] | 巫江虹, 李程, 杨兆光. CO2微通道气冷器的流场分解模拟及实验验证[J]. 上海交通大学学报(自然版), 2012, 46(03): 474-479. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||