J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (2): 179-187.doi: 10.1007/s12204-022-2500-z
李凡1,陆高锋1,丁云霄2,郑春元2,李斌2,翟晓强1
接受日期:
2021-04-28
出版日期:
2024-03-28
发布日期:
2024-03-26
LI Fan1 (李凡), LU Gaofeng1(陆高锋),DING Yunxiao2 (丁云霄),ZHENG Chunyuan2(郑春元),LI Bin2 (李斌),ZHAI Xiaoqiang1*(翟晓强)
Accepted:
2021-04-28
Online:
2024-03-28
Published:
2024-03-26
摘要: 提出了一种应用于循环加热式空气源热泵热水器(ASHPWH)的新型微通道冷凝器。首先测试了ASHPWH的工作性能。然后,利用涡流发生器对微通道冷凝器的结构进行了优化。最后,建立了ASHPWH的数值模型,并对优化后的微通道冷凝器进行了研究。实验结果表明,1 HP (735 W) ASHPWH的平均性能系数(COP)达到3.48。优化后的微通道冷凝器可与3 HP (2430 W)平均供热容量为10.30 kW的ASHPWH相匹配,平均COP为4.24,比国家标准的限定值高14.6%。
中图分类号:
李凡1, 陆高锋1, 丁云霄2, 郑春元2, 李斌2, 翟晓强1. 循环加热式空气源热泵热水器的性能及优化[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 179-187.
LI Fan(李凡), LU Gaofeng(陆高锋), DING Yunxiao(丁云霄), ZHENG Chunyuan(郑春元), LI Bin(李斌), ZHAI Xiaoqiang(翟晓强). Performance and Optimization of Air Source Heat Pump Water Heater with Cyclic Heating[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 179-187.
[1] WANG Y, YOU S J, SUN Y K, et al. Performance test investigation and operational evaluation of air source heat pump water heater [J]. Fluid Machinery, 2017, 45(10): 77-82 (in Chinese). [2] YUAN Z Y, TAO L R, YU Z Y. Effect of initial water temperature on the performance of air-source heat pump water heater system [J]. Journal of Refrigeration, 2017, 38(6): 73-79 (in Chinese). [3] XU Y J, HUANG Y G, JIANG N, et al. Experimental and theoretical study on an air-source heat pump water heater for Northern China in cold winter: Effects of environment temperature and switch of operating modes [J]. Energy and Buildings, 2019, 191: 164-173. [4] QIU J Y, ZHANG H, SHENG J, et al. Experimental investigation of L41b as replacement for R410A in a residential air-source heat pump water heater [J]. Energy and Buildings, 2019, 199: 190-196. [5] YANG L, SHAO L L, ZHANG C L. Modeling and optimization of air source heat pump water heaters using wrap-around micro-channel condenser [J]. Journal of Refrigeration, 2014, 35(1): 66-70 (in Chinese). [6] SUN C L. Simulation and experiment on the character of R290 applied in air source heat pump water heater [D]. Nanjing: Nanjing University of Science and Technology, 2016 (in Chinese). [7] CHEN J H, YU J L. Dynamic simulation of an airsource heat pump water heater using novel modified evaporator model [J]. Applied Thermal Engineering, 2018, 144: 469-478. [8] YANG Y A, LI R S, ZHU Y Q, et al. Experimental and simulation study of air source heat pump for residential applications in Northern China [J]. Energy and Buildings, 2020, 224: 110278. [9] LOPEZ-BELCHI A, ILLAN-GOMEZ F. Evaluation of a condenser based on mini-channels technology working with R410A and R32. Experimental data and performance estimate [J]. Applied Energy, 2017, 202: 112-124. [10] RAHMAN M M, KARIYA K, MIYARA A. An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins [J]. International Journal of Heat and Mass Transfer, 2018, 116: 50-60. [11] State Administration for Market Regulation. Heat pump water heater for household and similar application: GB/T 23137—2020 [S]. Beijing: China Standards Press, 2020 (in Chinese). [12] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. [13] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Fundamentals of heat and mass transfer [M]. 17 ed. Hoboken: John Wiley & Sons, 2011. [14] YANG C Y, WEBB R L. Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins [J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 791-800. [15] YANG C Y, WEBB R L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins [J]. International Journal of Heat and Mass Transfer, 1996, 39(4): 801-809. [16] LIANG G, ISLAM M D, KHAROUA N, et al. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators [J]. International Journal of Thermal Sciences, 2018, 134: 54-65. [17] WANG H, TOUBER S. Distributed and non-steadystate modelling of an air cooler [J]. International Journal of Refrigeration, 1991, 14(2): 98-111. [18] WEBB R L, ERMIS K. Effect of hydraulic diameter on condensation of R-134A in flat, extruded aluminum tubes [J]. Journal of Enhanced Heat Transfer, 2001, 8(2): 77-90. [19] LI W, TAO W, KANG H, et al. Experimental study on heat transfer and pressure drop characteristics for finand-tube heat exchangers [J]. Chinese Journal of Mechanical Engineering, 1997, 33(1): 81-86 (in Chinese). [20] ZHANG C L. Simulation principle and technology of refrigeration and air conditioning system [M]. Beijing: Chemical Industry Press, 2013 (in Chinese). |
[1] | 叶振鸿1, 王炜2, 李新华2, 陈江平1. 综述:微通道换热器的防冻技术[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 161-178. |
[2] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[3] | 顾娟,黄荣宗,刘振宇,吴慧英. 不同热边界条件下微通道内气体的流动与传热特性[J]. 上海交通大学学报(自然版), 2018, 52(9): 1038-1043. |
[4] | 马磊,谷波,田镇,李萍. 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1043-1049. |
[5] | 李沛晔,都晓慧,胡延东,赵社戌. 微通道中细胞转动对其化学微环境的影响[J]. 上海交通大学学报(自然版), 2016, 50(02): 283-287. |
[6] | 屈健,王谦,何志霞,韩新月,胡自成,刘涛,王超. 矩形微通道内液滴产生和运动特性实验研究[J]. 上海交通大学学报(自然版), 2015, 49(01): 86-90. |
[7] | 贾洪伟1,张鹏1,郭涛2,付鑫3,江世臣3. 微通道热沉内液氮的流动沸腾换热实验[J]. 上海交通大学学报(自然版), 2014, 48(09): 1274-1278. |
[8] | 方继华1,谷波1,田镇1,赵鹏程2. 制冷剂侧结构对多元微通道平行流冷凝器传热与流动性能的影响[J]. 上海交通大学学报(自然版), 2014, 48(09): 1315-1322. |
[9] | 张萍1,谷波1,王婷1,赵鹏程2,马洪涛2. 多元微通道平行流冷凝器理论模型与实验研究[J]. 上海交通大学学报(自然版), 2013, 47(11): 1738-1744. |
[10] | 季丽娜,胡延东,李沛晔. 微通道中细胞平动对其周围化学微环境的影响[J]. 上海交通大学学报(自然版), 2013, 47(10): 1520-1524. |
[11] | 梁媛媛, 赵宇, 陈江平. 微通道平行流蒸发器仿真模型[J]. 上海交通大学学报(自然版), 2013, 47(03): 413-416. |
[12] | 巫江虹, 李程, 杨兆光. CO2微通道气冷器的流场分解模拟及实验验证[J]. 上海交通大学学报(自然版), 2012, 46(03): 474-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||