上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (8): 961-968.doi: 10.16183/j.cnki.jsjtu.2018.08.012
汪韬,贡亮,张经纬,吴林立梓,马志宏,杨刚,毛雨晗,洪骏,刘成良
发布日期:
2025-07-02
通讯作者:
贡亮,男,副教授,博士生导师,电话(Tel.):021-34206071;E-mail:gongliang_mi@sjtu.edu.cn.
作者简介:
汪韬(1994-),男,浙江省杭州市人,硕士生,主要研究方向为农业机器人视觉伺服控制.
基金资助:
WANG Tao,GONG Liang,ZHANG Jingwei,WU Linlizi,MA Zhihong,YANG Gang,MAO Yuhan,HONG Jun,LIU Chengliang
Published:
2025-07-02
摘要: 针对水稻样本图像中主茎被遮挡,现有算法难以识别剑叶节点、散岔稻穗主轴问题,提出了基于机器视觉的剑叶节点搜索算法,通过自定义聚类生成稻穗与剑叶类中心,识别判定散岔稻穗轴线,最终得到穗叶夹角.其中,提出的剑叶节点搜索算法对剑叶节点的模糊定位进行量化,经过实验验证,具有较好的鲁棒性和准确性;自定义的K-means方法基于样本统计信息,解决了散岔穗叶夹角测量问题.实验表明,该算法误差为1.89%,与现有算法相比,局限性低,鲁棒性强,更准确高效.
中图分类号:
汪韬,贡亮,张经纬,吴林立梓,马志宏,杨刚,毛雨晗,洪骏,刘成良. 基于自定义聚类的水稻剑叶夹角测量[J]. 上海交通大学学报, 2018, 52(8): 961-968.
WANG Tao,GONG Liang,ZHANG Jingwei,WU Linlizi,MA Zhihong,YANG Gang,MAO Yuhan,HONG Jun,LIU Chengliang. Measurement of Rice Flag Leaf Angle Based on Redefined Clustering Method[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 961-968.
[1]HASAN M J, KULSUM M U, AKTER A, et al. Genetic variability and character association for agronomic traits in hybrid rice (Oryza sativa L.)[J]. Bangladesh Journal of Plant Breeding and Genetics, 2013, 24(1): 45-51. [2]ZHANG B, YE W, REN D, et al. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice[J]. Rice, 2015, 8(1): 2. [3]蔡金洋, 杨尧城. 水稻剑叶角度的遗传研究进展[J]. 农业科技通讯, 2013(12): 13-17. CAI Jinyang, YANG Yaocheng. Advances in genetic research of rice flag leaf angle[J]. Bulletin of Agricultural Science and Technology, 2013(12): 13-17. [4]洪凯. 不同环境下水稻剑叶夹角与单株产量性状的QTL分析[D]. 金华:浙江师范大学化学与生命科学学院, 2016. HONG Kai. QTL analysis of rice yield and flag leaf angle traits in different environment[D]. Jinhua: College of Chemistry and Life Sciences, Zhejiang Normal University, 2016. [5]袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997(6): 4-9. YUAN Longping. Hybrid rice breeding for super high yield[J]. Hybrid Rice, 1997 (6): 4-9. [6]LI L, ZHANG Q, HUANG D. A review of imaging techniques for plant phenotyping[J]. Sensors, 2014, 14(11): 20078-20111. [7]SPALDING E P, MILLER N D. Image analysis is driving a renaissance in growth measurement[J]. Current Opinion in Plant Biology, 2013, 16(1): 100-104. [8]VIBHUTE A, BODHE S K. Applications of image processing in agriculture: a survey[J]. International Journal of Computer Applications, 2012, 52(2): 35-40. [9]CHUNG C L, HUANG K J, CHEN S Y, et al. Detecting bakanae disease in rice seedlings by machine vision[J]. Computers and Electronics in Agriculture, 2016, 121: 404-411. [10]杨红云, 孙爱珍, 胡昶, 等. 基于图像视觉的水稻茎叶夹角测量研究[J]. 科技通报, 2015(5): 81-85. YANG Hongyun, SUN Aizhen, HU Chang, et al. Study on the angle between rice stem and leaf measuring method using image vision technology[J]. Bulletin of Science and Technology, 2015(5): 81-85. [11]路文超, 赵勇, 罗斌, 等. 基于Android手机的水稻剑叶角测量系统[J]. 农业机械学报, 2015(11): 296-301. LU Wenchao, ZHAO Yong, LUO Bin, et al. Measurement system of rice flag leaf angle based on Android smart phone[J]. Transactions of The Chinese Society of Agricultural Machinery, 2015(11): 296-301. [12]SONI N, GANATRA A. Categorization of several clustering algorithms from different perspective: A review[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2(8): 63-68. [13]PATEL A, SINGH P. New approach for K-means and K-medoids algorithm[J]. International Journal of Computer Applications Technology and Research, 2012, 2(1): 1-5. [14]VELMURUGAN T. Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data[J]. Applied Soft Computing, 2014, 19: 134-146. [15]LAM Y K, TSANG P W M. Exploratory K-means: A new simple and efficient algorithm for gene clustering[J]. Applied Soft Computing, 2012, 12(3): 1149-1157. [16]AZIMI R, GHAYEKHLOO M, GHOFRANI M, et al. A novel clustering algorithm based on data transformation approaches[J]. Expert Systems with Applications, 2017, 76: 59-70. [17]CELEBI M E, KINGRAVI H A, VELA P A. A comparative study of efficient initialization methods for the K-means clustering algorithm[J]. Expert Systems with Applications, 2013, 40(1): 200-210. |
[1] | . 基于遗传聚类的双馈风电场等效模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 300-308. |
[2] | 何通, 韦亚利, 卢青, 毕千. 无人机群协同侦察多点目标路径规划与控制[J]. 空天防御, 2025, 8(1): 31-40. |
[3] | 余浩, 黎灿兵, 叶志亮, 彭穗, 任万鑫, 陈思捷, 唐彬伟, 陈达伟. 计及尾流效应的风电场短路故障动态等值建模[J]. 上海交通大学学报, 2024, 58(6): 798-805. |
[4] | 任浩浩, 马寒菲, 魏裕璐, 余思慧, 周云. 基于非参数模型的雷达辐射源智能识别[J]. 空天防御, 2024, 7(5): 36-44. |
[5] | 徐春晖1, 2, 周仕昊1, 2, 4, 祁 彧1, 2, 方 田1, 2, 3, 杨士霖1, 2, 3. 基于深海多目标搜寻任务的AUV路径规划方法研究[J]. 海洋工程装备与技术, 2024, 11(4): 95-102. |
[6] | 吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[7] | 何文, 高斌, 王强强, 冯少孔, 叶冠林. 基于高斯混合聚类的综合物探方法及其在岩溶勘探中的应用[J]. 上海交通大学学报, 2024, 58(11): 1724-1734. |
[8] | 米阳, 李海鹏, 陈博洋, 彭建伟, 魏炜, 姚艳. 基于模糊场景聚类的微电网两阶段优化配置[J]. 上海交通大学学报, 2023, 57(9): 1137-1145. |
[9] | 肖鹏飞, 倪何, 金家善. 基于MWSA的热力系统单参数时序预测方法[J]. 上海交通大学学报, 2023, 57(1): 36-44. |
[10] | 陈赟, 沈浩, 王佳裕, 赵文恺, 潘智俊, 王晓慧, 肖银璟. 基于“能源大脑”的城市区域碳排放实时计算方法[J]. 上海交通大学学报, 2022, 56(9): 1111-1117. |
[11] | 陈昌川, 刘凯, 刘仁光, 冯晓棕, 覃延佳, 代少升, 张天骐. 基于多源局部放电信号数据流聚类分离方法[J]. 上海交通大学学报, 2022, 56(8): 1014-1023. |
[12] | 孙棪伊, 范文晶, 曾远帆, 干兴业, 汤日佳, 韩锐. 基于Harris角点检测的装填靶标识别方法[J]. 空天防御, 2022, 5(4): 87-91. |
[13] | 黄鹤, 熊武, 吴琨, 王会峰, 茹锋, 王珺. 基于记忆传递旗鱼优化的K均值混合迭代聚类[J]. 上海交通大学学报, 2022, 56(12): 1638-1648. |
[14] | 游广增, 汤翔鹰, 胡炎, 邰能灵, 朱欣春, 李玲芳. 基于典型运行场景聚类的电力系统灵活性评估方法[J]. 上海交通大学学报, 2021, 55(7): 802-813. |
[15] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||