上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (10): 1314-1323.doi: 10.16183/j.cnki.jsjtu.2018.10.021
韩韬,吉小军,李平,文玉梅,施文康
发布日期:
2025-07-02
作者简介:
韩韬(1973-),男,山东省莱芜市人,教授,E-mail:than@sjtu.edu.cn.
基金资助:
HAN Tao,JI Xiaojun,LI Ping,WEN Yumei,SHI Wenkang
Published:
2025-07-02
摘要: 无线无源赋予声表面波(Surface Acoustic Wave, SAW)传感器的显著特点使其在物联网、智能电网、智慧城市等领域日益受到关注.综述了上海交通大学在SAW基础理论、器件精确仿真分析建模、传感器无线阅读装置设计、信息获取及处理算法以及应用等方面的研究成果,详细介绍了面向智能化配网中压开关柜动静触头温度、环网柜电缆终端头温度以及配网变压器油温/油位监测的声表面波无线无源温度传感器研发与应用情况,同时介绍了耐高温声表面波无线无源传感器研发进展以及在炼铝电解槽温度监控中的应用.
中图分类号:
韩韬,吉小军,李平,文玉梅,施文康. 声表面波无线无源传感器[J]. 上海交通大学学报, 2018, 52(10): 1314-1323.
HAN Tao,JI Xiaojun,LI Ping,WEN Yumei,SHI Wenkang. Surface Acoustic Wave Based Wireless and Passive Sensors[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1314-1323.
[1]LALJER C E. Joint Chemical Agent Detector (JCAD): The future of chemical agent detection[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4722: 41-49. [2]BAO X Q, BURKHARD W, VARADAN V V, et al. SAW temperature sensor and remote reading system[C]//IEEE 1987 Ultrasonics Symposium. IEEE. 1987: 583-586. [3]POHL A. Review of wireless SAW sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(2): 317-332. [4]REINDL L M, SHRENA I M. Wireless measurement of temperature using surface acoustic waves sensors[C]//IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51: 1457-1463. [5]FRIEDT J M, DROIT C, BALLANDRAS S, et al.Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy[J]. Review of Scientific Instruments, 2012, 83(5): 055001. [6]KUYPERS J, REINDL L, TANAKA S, et al. Ma-ximum accuracy evaluation scheme for wireless SAW delay-line sensors[J]. IEEE Transactions on Ultraso-nics, Ferroelectrics, and Frequency Control, 2008, 55(7): 1640-1652. [7]CUNHA D, MOONLIGHT T, LAD R, et al. High temperature sensing technology for applications up to 1000 ℃[C]//2008 IEEE conference on sensors, 2008: 752-755. [8]PENG Z. High temperature langasite surface acoustic wave sensors[D]. Carnegie Mellon University, 2011. [9]TIERSTEN H F. Perturbation theory for linear electroelastic equations for small fields superposed on a bias[J]. Journal of Acoustical Society of America, 1978, 64(3): 832-837. [10]吉小军. 高温偏载条件下的声表面波压力传感器理论研究[D]. 上海: 上海交通大学, 2004. JI Xiaojun. Theoretical study on SAW pressure sensor under high temperature and partial load condition[D]. Shanghai: Shanghai Jiao Tong University, 2004. [11]JI X J, HAN T, SHI W K. Investigation on SAW properties of LGS and optimal cuts for high-temperature applications[J]. IEEE Transactions on Ultraso-nics, Ferroelectrics, and Frequency Control, 2005, 52(11): 2075-2080. [12]HAN T, JI X J, SHI W K. Optimal pressure-sensitive cuts for surface acoustic waves on langasite[J]. Science in China, 2006, 49(2): 254-261. [13]KANG A L, LIN J Q, JI X J, et al. A high sensiti-vity pressure sensor based on surface transverse wave[J]. Sensors and Actuators A: Physcis, 2012, 187: 141-146. [14]JI X J, FAN Y P, CHEN J, et al. Passive wireless torque sensor based on surface transverse wave[J]. IEEE Sensors Journal, 2016, 16(4): 888-894. [15]ZHANG Q Z, HAN T, TANG G B, et al. SAW characteristics of AlN/SiO2/3C-SiC layered structure with embedded electrodes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(10): 1608-1612. [16]DIXON B, KALININ V. A Second generation in-car tire pressure monitoring system based on wireless passive SAW sensors[C]//2006 IEEE International Frequency Control Symposium and Exposition, 2006: 374-380. [17]DIOGO S, JOANA C M, ANTNIO B P, et al. Measuring torque and temperature in a rotating shaft using commercial SAW sensors[J]. Sensors, 2017, 17(7): 1547. [18]SAUVAGE G. Phase noise in oscillators: A mathematical analysis of Leeson’s model[J]. Instrumentation and Measurement, IEEE Transactions on, 1977, 26(4): 408-410. [19]陈宁, 费元春. 高速数据采集系统中的孔径抖动[J]. 北京理工大学学报, 2003, 23(2): 234-237. CHEN Ning, FEI Yuanchun. Effects of aperture jitter to the signal noice ration in high speed data acquisition systems[J]. Journal of Beijing Institute of Technology, 2003, 23(2): 234-237. [20]YAO Y X, PANDIT S M. Cramér-Rao lower bounds for a damped sinusoidal process[J]. Signal Processing, IEEE Transactions on, 1995, 43(4): 878-885. [21]HAN T, ZHANG C R, HU Y, et al. Recent research results on wireless passive acoustic sensors and their applications[C]//2016 IEEE Ultrasonics Symposium, 2016: 1-5. [22]LIU B Q, ZHANG C R, JI X J, et al. A performance improved frequency estimation algorithm for passive wireless SAW resonant sensors[J]. Sensors, 2014, 13: 18545-18555. [23]KALININ V. Comparison of frequency estimators for interrogation of wireless resonant SAW sensors[C]//2015 IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 2015: 498-503. [24]LIU B Q, HAN T, ZHANG C R. Error correction method for passive and wireless resonant SAW temperature sensor[J]. IEEE Sensors Journal, 2015, 15(6): 3608-3614. [25]薛明喜, 杨扬, 张晨睿, 等. 基于自适应Kalman滤波的SAW测温数据纠错方法[J]. 仪器仪表学报, 2016, 37(12): 2766-2773. XUE Mingxi, YANG Yang, ZHANG Chenrui, et al. Error correction method for SAW temperature measurement data based on adaptive Kalman filter[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2766-2773. [26]LIN J M, WANG N, CHEN H, et al. Fast, precise, and full extraction of the COM parameters for multielectrode-type gratings by periodic Green’s function method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(12): 1735-1738. |
[1] | . 基于AgNWs/PDMS的单向敏感柔性应变电阻传感器[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 209-219. |
[2] | 陈俊伶1, 2, 3, 高飞扬1, 3, 张黎明1, 3, 郑雄飞1, 3. 基于导电石墨烯/PDMS墨水的分形可穿戴柔性传感器的直接墨水书写方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 18-26. |
[3] | 韩青原. 港口自动货运环境感知技术现状综述[J]. 海洋工程装备与技术, 2025, 12(1): 79-86. |
[4] | 李吉昊1, 林冠英2, 王暖升3, 李 洋3, 李俊漾1. 柔性海洋CTD传感器发展概述[J]. 海洋工程装备与技术, 2024, 11(3): 69-77. |
[5] | 刘玉亮, 朱 迪, 朱永凯, 欧阳丽虎. 一种船用吸附式系泊装置的液压位移补偿系统[J]. 海洋工程装备与技术, 2024, 11(2): 59-62. |
[6] | 张振宁1,刘强2,吕春峰3,毛义梅1,陶卫1,赵辉1. 双线圈电涡流传感器参数优化及精度提高方法研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 596-603. |
[7] | 陈国龙,王慷,曹政,靳伍银. 基于角度谱信息熵的时域变化涡流分布定量评价[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 587-595. |
[8] | 陈刚, 刘宏月, 高瑞翔. 光纤应变传感器检测标定技术[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 551-559. |
[9] | 邱建杰, 蔡益朝, 李浩, 龙威宇, 韩瑜. 基于不确定噪声分布的多目标航迹关联模型[J]. 空天防御, 2023, 6(3): 104-112. |
[10] | 赵昭, 雷华明. 差压式电容传感器膜片的变形分析与优化设计[J]. 上海交通大学学报, 2023, 57(3): 264-272. |
[11] | . 基于多视角道路相机的时空关联三维车辆检测与跟踪系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 52-60. |
[12] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[13] | . 外参标定的激光-视觉-惯性里程计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
[14] | 李晗, 张波涛, 王俊杰, 孙运达, 龚圣捷. 光纤光栅传感器振动与温度信号解耦[J]. 上海交通大学学报, 2022, 56(2): 214-222. |
[15] | 邱忠宇, 赵文龙, 高文, 潘洪涛, 史冉东. 动态视觉传感器的目标检测算法对比分析[J]. 空天防御, 2021, 4(4): 101-106. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||