[1]GUREVICH A. To use or not to use cool superconductors? [J]. Nature Materials, 2011, 10: 255-259.
[2]Office of Electric Transmission and Distribution, United States. Grid 2030: A national vision for electricity’s second 100 years [EB/OL]. (2003-04-02) [2018-04-25]. https:∥www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/Electric_Vision_Document.pdf.
[3]YASUDA K, ICHINOSE A, KIMURA A, et al. Research & development of superconducting fault current limiter in Japan [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 1978-1981.
[4]JO Y S, RYU K S, PARK M. 1st phase results and future plan of DAPAS program [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 678-682.
[5]VERHAEGE T, HERRMANN P F, BOCK J, et al. European project on a self-limiting superconducting power link [J]. Superconductor Science and Technology, 2000, 13(5): 488-492.
[6]林良真, 肖立业. 超导电力技术新进展及其未来发展的思考[J]. 物理, 2006, 35(6): 491-496.
LIN Liangzhen, XIAO Liye. Recent advance and future in development of high temperature superconducting power technology [J]. Physics, 2006, 35(6): 491-496.
[7]许惠英. 我国 “十二五” 能源发展规划透视[J]. 中国科技产业, 2010(8): 82-83.
XU Huiying. China’s “12th five-year” energy deve-lopment plan from a perspective [J]. Science & Technology Industry of China, 2010(8): 82-83.
[8]赵跃, 张智巍, 朱佳敏, 等. 面向实用化的第二代高温超导带材研究进展[J]. 电工电能新技术, 2017, 36(10), 69-75.
ZHAO Yue, ZHANG Zhiwei, ZHU Jiamin, et al. Progress of second generation high temperature superconductors for practical applications [J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(10), 69-75.
[9]朱佳敏, 陈思侃, 洪智勇.一种超导带材封装装置: 2017104160268[P]. 2017-06-05 [2018-04-25].
ZHU Jiamin, CHEN Sikan, HONG Zhiyong. A lamination setup of superconducting tapes: 2017104160268 [P]. 2017-06-05 [2018-04-25].
[10]NEUMUELLER H W, SCHMIDT W, KRAEMER H P, et al. Development of resistive fault current limiters based on YBCO coated conductors [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1950-1955.
[11]MARTINI L, NOE M, PASCAL T, et al. The ECCOFLOW project: Design and simulation results of a superconducting fault current limiter for operation in electricity networks [C]∥21st International Conference on Electricity Distribution. Franckfort, Germany: IET, 2011: 1-4.
[12]HOBL A, KRMER S, ELSCHNER S, et al. Superconducting fault current limiters: A new tool for the “grid of the future” [J]. CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid. Lisbon, Portugal: IET, 2012: 1-4.
[13]KLAUS D, MCWILLIAM J, HELM J, et al. Superconducting fault current limiters—UK network trials live and limiting [C]∥22nd International Conference and Exhibition on Electricity Distribution. Stockholm, Sweden: IET, 2013: 0285.
[14]XIN Y, GONG W Z, NIU X Y, et al. Manufacturing and test of a 35 kV/90 MVA saturated iron-core type superconductive fault current limiter for live-grid operation [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1934-1937.
[15]XIN Y, GONG W Z, HONG H, et al. Development of a 220 kV/300 MVA superconductive fault current limiter [J]. Superconductor Science and Technology, 2012, 25(10): 105011.
[16]HONG Z, SHENG J, YAO L, et al. The structure, performance and recovery time of a 10 kV resistive type superconducting fault current limiter [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5601304.
[17]LI B, LI C, GUO F, et al. Coordination of super-conductive fault current limiters with zero-sequence current protection of transmission lines [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 5602105.
[18]GONG W Z, XIN Y, HONG H, et al. Plenary talk—Practical HTS FCL development—Updates of innopower’s SFCL R&D projects [C]∥International Conference on Applied Superconductivity and Electromagnetic Devices. Beijing, China: IEEE, 2013: 256-256.
[19]ZHANG Z, SUN Q, XIAO L, et al. Research on fast fault identification method of 10.5 kV/1.5 kA superconducting fault current limiter [J]. Cryogenics, 2014, 63: 199-203.
[20]MARTINI L, BOCCHI M, DALESSANDRO R, et al. Electrical testing of 1 MVA-class three-phase superconducting fault current limiter prototypes [C]∥International Conference on Electricity Distribution. Vienna, Austria: IET, 2007: 0578.
[21]NOE M, SCHACHERER C. Status and outlook on superconducting fault current limiter development in Europe [J]. Proceedings of of International Symposium on EcoTopia Science. Nagoya, Japan: Nagoya University, 2007: 529-534.
[22]AHN M C, PARK D K, YANG S E, et al. A study on the design of the stabilizer of coated conductor for applying to SFCL [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1855-1858.
[23]YAZAWA T, KOYANAGI K, TAKAHASHI M, et al. Design and experimental results of three-phase superconducting fault current limiter using highly-resistive YBCO tapes [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1956-1959.
[24]KLAUS D, WILSON A, DOMMERQUE R, et al. Fault limiting technology trials in distribution networks [C]∥International Conference on Electricity Distribution. Prague, Czech Republic: IET, 2009: 0140.
[25]DUCKWORTH R C, ZHANG Y F, HA T, et al. Dynamic resistance of YBCO-coated conductors in applied AC fields with DC transport currents and DC background fields [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 3251-3256.
[26]PRUSSEIT W. Superconductor Industry in Germany: Status and perspectives [C]∥IEEE/CSC & ESAS European Superconductivity News Forum. [s.n.]: IEEE, 2008: 1-21.
[27]JEONG K W, MOON B S, PARK S K. Status and future direction of HTS power application in KEPCO [C]∥CIGRE-AORC Technical Meeting. Chiang Mai, Thailand: CIGRE, 2011: PL18.
[28]MARTINI L, BOCCHI M, ASCADE M, et al. Development, testing and installation of a superconducting fault current limiter for medium voltage distribution networks [J]. Physics Procedia, 2012, 36: 914-920.
[29]MARTINI L, BOCCHI M, BRAMBILLA R, et al. Design and development of 15 MVA class fault current limiter for distribution systems [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1855-1858.
[30]FABBRI M, FORZAN M, LUPI S, et al. Experimental and numerical analysis of DC induction heating of aluminum billets [J]. IEEE Transactions on Magnetics, 2009, 45(1): 192-200.
[31]CHOI J, KIM K, PARK M, et al. Practical design and operating characteristic analysis of a 10 kW HTS DC induction heating machine [J]. Physica C: Superconductivity and Its Applications, 2014, 504: 120-126.
[32]RUNDE M, MAGNUSSON N. Induction heating of aluminium billets using superconducting coils [J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1339-1341.
[33]RUNDE M, MAGNUSSON N, FULBIER C, et al. Commercial induction heaters with high-temperature superconductor coils [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1379-1383.
[34]FABBRI M, MORANDI A, NEGRINI F. Temperature distribution in aluminum billets heated by rotation in static magnetic field produced by superconducting magnets [J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24(1): 281-290.
[35]ZLOBINA M, NACKE B, NIKANOROV A. Adaptive induction system for heating of aluminium billet by rotation in DC magnetic field [C]∥Proceedings of the International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany: Leibniz Unversity of Hannover, 2008: 349-354.
[36]ZUEGER H. 630 kVA high temperature superconducting transformer [J]. Cryogenics, 1998, 38(11): 1169-1172.
[37]FUNAKI K, IWAKUMA M, TAKEO M, et al. Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen [J]. IEEE Transactions on Applied Superconductivity, 1997, 7(2): 824-827.
[38]MEHTA S. US effort on HTS power transformers [J]. Physica C: Superconductivity and Its Applications, 2011, 471(21/22): 1364-1366.
[39]BOHNO T, TOMIOKA A, IMAIZUMI M, et al. Development of 66 kV/6.9 kV 2 MVA prototype HTS power transformer [J]. Physica C: Superconductivity and Its Applications, 2005, 426/427/428/429/430/431: 1402-1407.
[40]KIM S H, KIM W S, CHOI K D, et al. Characteristic tests of a 1 MVA single phase HTS transformer with concentrically arranged windings [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2214-2217.
[41]BERGER A, NOE M, KUDYMOW A. Test results of 60 kVA current limiting transformer with full recovery under load [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1384-1387.
[42]HELLMANN S, ABPLANALP M, HOFSTETTER L, et al. Manufacturing of a 1-MVA-class superconducting fault current limiting transformer with recovery-under-load capabilities [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 5500305.
[43]GLASSON N, STAINES M, BUCKLEY R, et al. Development of a 1 MVA 3-phase superconducting transformer using YBCO roebel cable [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1393-1396.
[44]LI X, CHEN Q, SUN J, et al. Analysis of magnetic field and circulating current for HTS transformer windings [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(3): 3808-3813.
[45]JIN J, CHEN X. Development of HTS transformers [C]∥International Conference on Industrial Technology. Chengdu, China: IEEE, 2008: 1-6.
[46]QIU Q, DAI S, WANG Z, et al. Winding design and electromagnetic analysis for a 1250-kVA HTS transformer [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(1): 5500107.
[47]DAI S, MA T, QIU Q, et al. Development of a 1250-kVA superconducting transformer and its de-monstration at the superconducting substation [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(1): 5500107.
[48]HU D, LI Z, HONG Z, et al. Development of a single-phase 330 kVA HTS transformer using GdBCO tapes [J]. Physica C: Superconductivity and Its Applications, 2017, 539: 8-12.
[49]郑军.高温超导电机技术的研究现状与应用前景浅析[J]. 新材料产业, 2017(8): 60-65.
ZHENG Jun. The research status and application prospect of high temperature superconductor motor technology [J]. Advanced Materials Industry, 2017(8): 60-65.
[50]宋彭. 电枢超导型高温超导电机关键问题研究[D].北京:清华大学, 2016.
SONG Peng. Study on key technical issues of a synchronous generator with HTS amrature windings [D]. Beijing: Tsinghua University, 2016.
[51]白利锋, 张平祥.高温超导电机研究进展[J]. 低温物理学报, 2016, 38(5): 1-6.
BAI Lifeng, ZHANG Pingxiang. The development of HTS motors [J]. Chinese Journal of Low Temperature Physics, 2016, 38(5): 1-6.
[52]FRANK M, FRAUENHOFER J, VAN HASSELT P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2120-2123.
[53]GAMBLE B, SNITCHLER G, MACDONALD T. Full power test of a 36.5 MW HTS propulsion motor [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1083-1088.
[54]FRANK M, FRAUENHOFER J, VAN HASSELT P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2120-2123.
[55]许媛媛, 马光同, 邓自刚, 等. 低温和高温超导电动/发电机发展概述[J]. 低温物理学报, 2013, 35(1): 43-51.
XU Yuanyuan, MA Guangtong, DENG Zigang, et al. A survey of the development of the low- and high-Tc superconducting motors/generators [J]. Chinese Journal of Low Temperature Physics, 2013, 35(1): 43-51.
[56]刘翔. 采用第二代高温超导带材的高温超导电机研发项目顺利通过验收[EB/OL]. (2017-07-28) [2018-04-25]. http:∥www.iee.ac.cn/xwzx/kydt/201707/t20170728_4837701.html.
LIU Xiang. The research and development project of the high-temperature superconducting motor with the second-generation high-temperature superconducting strip passed the acceptance smoothly [EB/OL]. (2017-07-28) [2018-04-25]. http:∥www.iee.ac.cn/xwzx/kydt/201707/t20170728_4837701.html.
[57]NAKAMURA T, ITOH Y, YOSHIKAWA M, et al. Tremendous enhancement of torque density in HTS induction/synchronous machine for transportation equipments [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 5202304.
[58]QU T, SONG P, YU X, et al. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor [J]. Superconductor Science and Technology, 2014, 27(4): 044026.
[59]HUANG Z, ZHAO A, HUANG X, et al. Short-circuit fault simulations in an HTS wind generator with different mechanical conditions [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 5204606.
[60]HELLINGER R, MNICH P. Linear motor-powered transportation: History, present status, and future outlook [J]. Proceedings of the IEEE, 2009, 97(11): 1892-1900.
[61]SOTELO G G, DIAS D H N, DE OLIVEIRA R A H, et al. MagLev Cobra: Test facilities and operational experiments [J]. Journal of Physics Conference Series, 2014, 507: 032017.
[62]DENG Z, WANG J, ZHENG J, et al. Performance advances of HTS Maglev vehicle system in three essential aspects [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2137-2141.
[63]WANG J, WANG S, ZHENG J. Recent development of high temperature superconducting Maglev system in China [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2142-2147. |