上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (10): 1166-1177.doi: 10.16183/j.cnki.jsjtu.2018.10.004
邵昊舒,蔡旭
通讯作者:
蔡旭,男,教授,博士生导师,E-mail: xucai@sjtu.edu.cn.
作者简介:
邵昊舒(1993-),男,江苏省连云港市人,博士生,主要研究方向为高比例友好型风电并网技术.
基金资助:
SHAO Haoshu,CAI Xu
摘要: 随着风能利用规模的发展,风电渗透率不断提高,局部地区已达到50%以上.由于风电变流器的隔离作用,风电机组的转子运动和系统频率解耦,使得风电机组对于电力系统的惯量几乎没有贡献,降低了系统等效惯量,严重影响系统的频率稳定性.大型风电机组的惯量控制技术旨在利用机组转子动能赋予风电机组主动惯量响应和抑制电网频率跌落的能力,本文综述目前大型风电机组实现惯量控制的主要技术路线,从稳定性分析、控制系统优化、性能分析与评估等方面,介绍惯量控制在双馈风电机组以及全功率风电机组的研究与工程现状,并展望亟待解决的问题与技术需求.
中图分类号:
邵昊舒,蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报(自然版), 2018, 52(10): 1166-1177.
SHAO Haoshu,CAI Xu. Research Status and Prospect of Inertia Control for Large Scale Wind Turbines[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1166-1177.
[1]李益楠. 含虚拟惯量控制的双馈风电机组接入对系统小干扰稳定性的影响分析[D]. 北京: 华北电力大学, 2016. LI Yinan. Impact analysis of DFIG wind turbines considering virtual inertia control on system small-signal stability[D]. Beijing: North China Electric Power University, 2016. [2]中华人民共和国国家发展和改革委员会. 国家能源局关于促进智能电网发展的指导意见[EB/OL]. (2015-07-06)[2018-04-05]. http:∥www.sdpc.gov.cn/gzdt/201507/t20150707_736625.html. [3]王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4. WANG Chengshan, WANG Shouxiang. Study on some key problems related to distributed generation systems[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4. [4]BARTOSZ W, OMAR A J, 王靖. 分布式发电的高覆盖率对电力系统设计和运行的影响分析[J]. 电网技术, 2009, 33(15): 37-46. BARTOSZ W, OMAR A J, WANG Jing. Impact of high penetration of distributed generation on system design and operations[J]. Power System Technology, 2009, 33(15): 37-46. [5]朱国伟. 直驱式风电机组参与调频对电网频率稳定性的影响[D]. 合肥: 合肥工业大学, 2016. ZHU Guowei. The impact on frequency stability with participation of wind turbine based on direct-drive permanent magnet synchronous generators[D]. Hefei: Hefei University of Technology, 2016. [6]VIDYANANDAN K V, SENROY N. Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power Systems, 2013, 28(2): 837-846. [7]ALMEIDA R G D, LOPES J A P. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power Systems, 2007, 22(3): 944-950. [8]FU Y, WANG Y, ZHANG X. Integrated wind turbine controller with virtual inertia and primary frequency responses for grid dynamic frequency support[J]. Iet Renewable Power Generation, 2017, 11(8): 1129-1137. [9]吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017(2): 349-359. LV Zhipeng, SHENG Wanxing, LIU Haitao, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017(2): 349-359. [10]祝龙记, 王丹. 光伏逆变电源可变虚拟惯量控制策略的研究[J]. 太阳能学报, 2016, 37(4): 823-828. ZHU Longji, WANG Dan. Control strategy research of PV inverter with variable virtual inertia[J]. Acta Energiae Solaris Sinica, 2016, 37(4): 823-828. [11]MIAO Z, FAN L, OSBORN D, et al. Wind farms with HVdc delivery in inertial response and primary frequency control[J]. IEEE Transactions on Energy Conversion, 2010, 25(4): 1171-1178. [12]SILVA B, MOREIRA C L, SECA L, et al. Provision of inertial and primary frequency control services using offshore multiterminal HVDC networks[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 800-808. [13]MOLINA-GARCIA A, MUNOZ-BENAVENTE I, HANSEN A D, et al. Demand-side contribution to primary frequency control with wind farm auxiliary control[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2391-2399. [14]田新首. 大规模双馈风电场与电网交互作用机理及其控制策略研究[D]. 北京: 华北电力大学, 2016. TIAN Xinshou. Research on the interactions between DFIGs based wind farms and power grid and related optimal control strategies[D]. Beijing: North China Electric Power University, 2016 [15]王刚, 侍乔明, 付立军, 等. 虚拟惯量控制方式下永磁风力发电机组轴系扭振机理分析[J]. 电机与控制学报, 2014, 18(8): 8-16. WANG Gang, SHI Qiaoming, FU Lijun, et al. Mechanism analysis of torsional vibration for directly-driven windturbine with permanent magnet synchronous generator shaftsystem with virtual inertia control[J]. Electric Machines and Control, 2014, 18(8): 8-16. [16]HOLDSWORTHL, EKANAYAKEJB, JENKINSN. Power system frequency response from fixed speed and doubly fed inductiongenerator-based wind turbines[J]. Wind Energy, 2004, 7(1): 21-35. [17]MORREN J, PIERIK J, DE HAAN S W H. Inertial response of variable speed wind turbines[J]. Electric Power Systems Research, 2006, 76(11): 980-987. [18]郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015(21): 165-175. ZHENG Tianwen, CHEN Laijun, CHEN Tianyi, et al. Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015(21): 165-175. [19]钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-348. ZHONG Qingchang. Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37(2): 336-348. [20]曾正, 邵伟华, 冉立, 等. 虚拟同步发电机的模型及储能单元优化配置[J]. 电力系统自动化, 2015, 39(13): 22-31. ZENG Zheng, SHAO Weihua, RAN Li, et al. Mathematical model and strategic energy storage selection of virtual synchronous generator[J]. Automation of Electric Power Systems, 2015, 39(13): 22-31. [21]张建良, 齐冬莲, 吴越, 等. 双馈感应风机虚拟惯量控制器的设计及仿真实验研究[J]. 实验技术与管理, 2017, 34(5): 115-118. ZHANG Jianliang, QI Donglian, WU Yue, et al. Research on design and simulation experiment of virtual inertia controller for doubly fed induction generator[J]. Experimental Technology and Management, 2017, 34(5): 115-118. [22]ZHANG Z S, SUN Y Z, LIN J, et al. Coordinated frequency regulation by doubly fed induction generator-based wind power plants[J]. Renewable Power Generation Iet, 2012, 6(1): 38-47. [23]张琛, 蔡旭, 李征. 具有自主电网同步与弱网稳定运行能力的双馈风电机组控制方法[J]. 中国电机工程学报, 2017, 37(2): 476-485. ZHANG Chen, CAI Xu, LI Zheng. Control of DFIG-based wind turbines with the capability of automatic grid-synchronization and stable operation under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(2): 476-485. [24]程雪坤, 孙旭东, 柴建云, 等. 电网对称故障下双馈风力发电机的虚拟同步控制策略[J]. 电力系统自动化, 2017, 41(20): 47-54. CHENG Xuekun, SUN Xudong, CHAI Jianyun, et al. Virtual synchronous control strategy for doubly-fed induction generator wind turbines under symmetrical grid faults[J]. Automation of Electric Power Systems, 2017, 41(20): 47-54. [25]侍乔明, 王刚, 马伟明, 等. 直驱永磁风电机组虚拟惯量控制的实验方法研究[J]. 中国电机工程学报, 2015, 35(8): 2033-2042. SHI Qiaoming, WANG Gang, MA Weiming, et al. An experimental study method of D-PMSG with virtual inertia control[J]. Proceedings of the CSEE, 2015, 35(8): 2033-2042. [26]汤奕, 戴剑丰, 冯祎鑫, 等. 基于虚拟惯量的风电场黑启动频率协同控制策略[J]. 电力系统自动化, 2017, 41(3): 19-24. TANG Yi, DAI Jianfeng, FENG Yixin, et al. Cooperative frequency control strategy for wind farm black-start based on virtual inertia[J]. Automation of Electric Power Systems, 2017, 41(3): 19-24. [27]ZHONG Q C, MA Z Y, MING W L. Grid-friendly wind power systems based on the synchronverter technology[J]. Energy Conversion and Management, 2015, 89: 719-726. [28]赵晶晶, 吕雪, 符杨, 等. 基于双馈感应风力发电机虚拟惯量和桨距角联合控制的风光柴微电网动态频率控制[J]. 中国电机工程学报, 2015, 35(15): 3815-3822. ZHAO Jingjing, L Xue, FU Yang, et al. Dynamic frequency control strategy of wind/photovoltaic/diesel microgrid based on DFIG virtual inertia control and pitch angle control[J]. Proceedings of the CSEE, 2015, 35(15): 3815-3822. [29]胡一鸣. 双馈风力发电机参与电力电网频率调节的控制策略研究[D]. 成都: 西南交通大学, 2017. HU Yiming. The Control strategy study of doubly-fed induction wind generator participation in system prequency regulation[D]. Chengdu: Southwest Jiaotong University, 2017. [30]董贺贺, 张延迟, 杨宏坤, 等. 基于双馈感应风机的虚拟惯量控制研究[J]. 可再生能源, 2016, 34(8): 1174-1179. DONG Hehe, ZHANG Yanchi, YANG Hongkun, et al. Research on virtual inertia control based on doubly fedinduction generator[J]. Renewable Energy Resources, 2016, 34(8): 1174-1179. [31]崔林, 文劲宇, 程时杰. 超导磁储能系统抑制风力发电功率波动的研究[J]. 电力科学与技术学报, 2008, 23(1): 24-30. CUI Lin, WEN Jinyu, CHENG Shijie. Research on theapplication of superconducting magnetic energy storageunit to damp wind generation power fluctuating[J]. Journal of Electric Power Science and Technology, 2008, 23(1): 24-30. [32]刘世林, 孙海顺, 文劲宇. 一种新型风力发电机与飞轮储能联合系统的并网运行控制[J]. 电工技术学报, 2012, 27(4): 248-254. LIU Shilin, SUN Haishun, WEN Jinyu. Novel structure andoperation control of a flywheel energy storage systemassociated to wind generator connected to power grid[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 248-254. [33]张坤, 黎春湦, 毛承雄, 等. 基于超级电容器—蓄电池复合储能的直驱风力发电系统的功率控制策略[J]. 中国电机工程学报, 2012, 32(25): 99-108. ZHANG Kun, LI Chunsheng, MAO Chengxiong, et al. Powercontrol of directly-driven wind generation systems withbattery/ultra-capacitor hybrid energy storage[J]. Proceedings of the CSEE, 2012, 32(25): 99-108. [34]XIAO Z, HUANG Y, GUERRERO J M, et al. Frequency participation by using virtual inertia in wind turbines including energy storage[C]∥IECON 2017 Conference of the IEEE Industrial Electronics Society. IEEE, 2017: 2492-2497. [35]周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-495. ZHOU Tianpei, SUN Wei. Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-495. [36]ZHU J, Hu J, HUNG W, et al. Synthetic inertia control strategy for doubly-fed induction generator wind turbine generators using lithium-ion supercapacitors[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 773-783. [37]MA Y, CAO W, YANG L, et al. Virtual synchronous generator control of full converter wind turbines with short term energy storage[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8821-8831. [38]王晓东, 李凯凯, 刘颖明, 等. 基于状态观测器的风电机组单机储能系统虚拟惯量控制[J]. 电工技术学报, 2018, 33(6): 1257-1264. WANG Xiaodong, LI Kaikai, LIU Yingming, et al. Virtual inertia control of energy storage system in wind turbine based on extended state observer[J]. Transactions on China Electrotechnical Society, 2018, 33(6): 1257-1264. [39]姚骏, 赵磊, 刘奥林, 等. 基于模糊比例-微分控制的永磁直驱风电机组频率调节[J]. 电网技术, 2014, 38(11): 3095-3102. YAO Jun, ZHAO Lei, LIU Aolin, et al. Fuzzy proportional plus-derivative control based frequency regulation of permanent magnet direct-drive wind power generation unit[J]. Power System Technology, 2014, 38(11): 3095-3102. [40]马静, 李益楠, 邱扬, 等. 双馈风电机组虚拟惯量控制对系统小干扰稳定性的影响[J]. 电力系统自动化, 2016, 40(16): 1-7. MA Jing, LI Yinan, QIU Yang, et al. Impact of virtual inertia control of DFIG wind turbines on system small-signal stability[J]. Automation of Electric Power Systems, 2016, 40(16): 1-7. [41]蒋文韬, 付立军, 王刚, 等. 直驱永磁风电机组虚拟惯量控制对系统小干扰稳定性影响分析[J]. 电力系统保护与控制, 2015(11): 33-40. JIANG Wentao, FU Lijun, WANG Gang, et al. Impact of direct-drive permanent magnet wind turbines virtual inertia control on power system small signal stability analysis[J]. Power System Protection and Control, 2015(11): 33-40. [42]杜燕, 苏建徽, 张榴晨, 等. 一种模式自适应的微网调频控制方法[J]. 中国电机工程学报, 2013, 33(19): 67-75. DU Yan, SU Jianhui, ZHANG Liuchen, et al. A mode adaptive frequency controller for microgrid[J]. Proceedings of the CSEE, 2013, 33(19): 67-75. [43]孟建辉, 王毅, 石新春, 等. 基于虚拟同步发电机的分布式逆变电源控制策略及参数分析[J]. 电工技术学报, 2014, 29(12): 1-10. MENG Jianhui, WANG Yi, SHI Xinchun, et al. Control strategy and parameter analysis of distributed inverters based on VSG[J]. Transactions on China Electrotechnical Society, 2014, 29(12): 1-10. [44]陈润泽, 吴文传, 孙宏斌, 等. 双馈风电机组惯量控制对系统小干扰稳定的影响[J]. 电力系统自动化, 2014, 38(23): 6-12. CHEN Runze, WU Wenchuan, SUN Hongbin, et al. Impact of inertia control of DFIG wind turbines on system small-signal stability[J]. Automation of Electric Power Systems, 2014, 38(23): 6-12. [45]张祥宇, 王爽, 王毅. 含可控惯量发电系统的功角暂态稳定分析与惯性控制策略[J]. 电力建设, 2018(1): 106-112. ZHANG Xiangyu, WANG Shuang, WANG Yi. Power angle transient stability analysis and inertial control strategy for power generation system with controlled inertia[J]. Electric Power Construction, 2018(1): 106-112. [46]陈汉杰, 罗毅, 张磊, 等. 双馈风机虚拟惯量控制对电力系统暂态稳定的影响[J]. 现代电力, 2018, 35(4): 48-53. CHEN Hanjie, LUO Yi, ZHANG Lei, et al. Impact of virtual inertia control of doubly-fed induction generator on power system transient stability[J]. Modern Electric Power, 2018, 35(4): 48-53. [47]陈玉伟. 可控惯性发电系统的动态频率特性分析与综合控制研究[D]. 北京: 华北电力大学, 2016. CHEN Yuwei. Dynamic frequency characteristic of power generation system with controlled inertia and integrated control[D]. Beijing: North China Electric Power University, 2016 [48]张师, 于锡平, 秦英炜, 等. 风电接入位置对系统暂态稳定性的影响分析[J]. 分布式能源, 2017, 2(6): 78-81. ZHANG Shi, YU Xiping, QIN Yingwei, et al. Influence of wind power access location on system transient stability[J]. Distributed Energy, 2017, 2(6): 78-81. [49]TARNOWSKI G C, KJAR P C, SORENSEN P E, et al. Variable speed wind turbines capability for temporary over-production[C]∥Proceedings of the IEEE Power & Energy Society General Meeting. Calgary, AB, USA: IEEE, 2009: 1-7. [50]EL ITANI S, ANNAKKAGE U D, JOOS G.Short-term frequency support utilizing inertial response of DFIG wind turbines[C]∥Proceedings of the 2011 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 2011: 1-8. [51]刘璋玮, 刘锋, 梅生伟, 等. 扩张状态观测器在双馈风机虚拟惯量控制转速恢复中的应用[J]. 中国电机工程学报, 2016, 36(5): 1207-1217. LIU Zhangwei, LIU Feng, MEI Shengwei, et al. Application of extended state observer in wind turbines speed recovery after inertia response control[J]. Proceedings of the CSEE, 2016, 36(5): 1207-1217. [52]FENG Y, XIE Z. Coordinated primary frequency regulation and inertia response based on DFIG using over speed and torque reserve[J]. Chinese Control Conference, 2017: 9141-9144. [53]郝正航, 余贻鑫. 励磁控制引起的双馈风电机组传动系统扭振机理[J]. 电力系统自动化, 2010, 34(21): 81-86. HAO Zhenghang, YU Yixin. Analysis on wind turbine drivendfig shaft torsional oscillation mechanism caused by excitationcontrol[J]. Automation of Electric Power Systems, 2010, 34(21): 81-86. [54]解大, 王瑞琳, 王西田, 等. 多机型风电机组机网扭振的模型与机理[J]. 太阳能学报, 2011, 32(9): 1281-1287. XIE Da, WANG Ruilin, WANG Xitian, et al. Models and prin-ciples of kinds of wind turbine for torsional vibration studies[J]. Acta Energiae Solaris Sinica, 2011, 32(9): 1281-1287. [55]张琛, 李征, 高强, 等. 双馈风电机组的不同控制策略对轴系振荡的阻尼作用[J]. 中国电机工程学报, 2013, 33(27): 135-144. ZHANG Chen, LI Zheng, GAO Qiang, et al. Damping effects ontorsional oscillation of DFIG drive-chain using different controlstrategies[J]. Proceedings of the CSEE, 2013, 33(27): 135-144. [56]GENG H, WU B, YANG G. Active damping for PMSG-based WECS with DC-Link current estimation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1110-1119. [57]章德, 刘锋, 梅生伟, 等. 双馈风机虚拟惯量控制对传动系统扭振影响[J]. 电机与控制学报, 2015, 19(10): 78-86. ZHANG De, LIU Feng, MEI Shengwei, et al. Influence of inertia response control of wind turbine with doublyfed induction generator on drive train torsional vibration[J]. Electric Machines and Control, 2015, 19(10): 78-86. [58]宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37(2): 412-423. SONG Qiong, ZHANG Hui, SUN Kai, et al. Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37(2): 412-423. [59]田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26. TIAN Xinshou, WANG Weisheng, CHI Yongning, et al. Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of Electric Power Systems, 2015, 39(5): 20-26. [60]ULLAH N R, THIRINGER T, KARLSSON D. Temporary primary frequency control support by variable speed wind turbines—Potential and applications[J]. IEEE Transactions on Power Systems, 2008, 23(2): 601-612. [61]AKBARI M, MADANI S M. Analytical evaluation of control strategies for participation of doubly fed induction generator-based wind farms in power system short-term frequency regulation[J]. Iet Renewable Power Generation, 2014, 8(3): 324-333. [62]邢鹏翔, 侍乔明, 王刚, 等. 风电机组虚拟惯量控制的响应特性及机理分析[J]. 高电压技术, 2018, 44(4): 1302-1310. XING Pengxiang, SHI Qiaoming, WANG Gang, et al. Response characteristics and mechanism analysis about virtual inertia control of wind generators[J]. High Voltage Engineering, 2018, 44(4): 1302-1310. [63]黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力电网频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31-38. HUANG Linbin, XIN Huanhai, HUANG Wei, et al. Quatified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(8): 31-38. |
[1] | 秦斌,周浩,邱丽,郭百顺,王欣. 基于模糊滑模控制的风力发电系统最大风能追踪[J]. 上海交通大学学报(自然版), 2014, 48(07): 993-997. |
[2] | 李福东1, 2, 吴敏1, 冯高熠3. 基于统计分析和多支持向量机的风电功率坡度事件分类预测[J]. 上海交通大学学报(自然版), 2012, 46(12): 1971-1976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||