上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (05): 730-735.

• 机械仪表工程 • 上一篇    下一篇

三维坐标点集的空间直线度高精度快速评定

罗钧1,麻锦侠1,刘学明2,张平2,黄守国1,陈建端2   

  1. (1. 重庆大学 光电技术及系统教育部重点实验室, 重庆 400030; 2. 兵器工业5011区域计量站, 重庆 400050)
  • 收稿日期:2015-03-17 出版日期:2016-05-28 发布日期:2016-05-28

High-Precision and Fast Evaluation of Spatial Straightness Error of 3D Coordinate Point Set

HUANG Shouguo1,CHEN Jianduan2   

  1. (1. Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing 400030; 2. 5011 District Measurement Station of Weapon Industry, Chongqing 400050, China)
  • Received:2015-03-17 Online:2016-05-28 Published:2016-05-28

摘要: 摘要: 针对3维坐标点集合空间直线度误差评定时出现的精度不高、评价效率低的问题,提出一种具有较高精度和较好鲁棒性的3点高精度快速算法(3PHFA).该算法依据国家标准规定的空间直线度有效判别形式,通过3维最小二乘法(3DLSA)拟合、空间坐标转换、坐标投影和确定最小包容圆(MCC),并最终确定最小包容圆柱面(MCS).通过在3DLSA基础上增加高效搜索算法,空间直线度评定精度提高约20%,耗时1 s以内.对比不同评定算法表明: 3PHFA具有效率高、精度高、鲁棒性好的优点,其误差评定精度全面优于3DLSA,适用于三坐标测量机(CMM)这类实时处理系统,具有良好的实用价值.

关键词: 空间直线度误差, 3点高精度快速算法, 最小包容圆, 误差评定

Abstract: Abstract: This paper proposed a novel highprecision, robust and fast spatial straightness error evaluation algorithm called 3 points highprecision fast algorithm (3PHFA) to deal with the problem of low precision and low efficiency when evaluating spatial straightness errors. With reference to the related national standard for construction of mathematics models, the algorithm mainly includes 3DLSA fitting, space coordinate translation, coordinate projection, and determining minimum circumscribed circle (MCC), which can determinate the minimum cylindrical surface (MCS). By adding the highly effective search algorithm to the 3DLSA algorithm, it almost improves the evaluation accuracy by 20% in less than 1 second. Compared with other evaluating algorithms, the 3PHFA has the advantages of high efficiency and accuracy, and better robustness. It is applicable to the realtime processing system such as coordinate measuring machine (CMM), and has a good practical value for evaluating machine parts.

Key words: Key words: spatial straightness, 3 points highprecision fast algorithm(3PHFA), minimum circumscribed circle(MCC), error evaluation

中图分类号: