上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (07): 1046-1052.

• 其他 • 上一篇    

烧结余热回收系统效率计算及参数动态优化

曹卫华1,2,蔡伊青2,袁艳1,2,吴敏1,2
  

  1. (1. 中国地质大学 自动化学院, 武汉 430074; 2. 中南大学 信息科学与工程学院, 先进控制与智能自动化湖南省工程实验室, 长沙 410083)
     
  • 收稿日期:2013-06-03 出版日期:2014-07-28 发布日期:2014-07-28
  • 基金资助:

    国家自然科学基金重大国际合作研究项目(61210011)

Exergy Efficiency Calculation and Parameter Optimization of the Sintering Waste Heat Recovery System

CAO Weihua1,2,CAI Yiqing2,YUAN Yan1,2,WU Min1,2
  

  1. (1. School of Automation, China University of Geosciences, Wuhan 430074, China; 2. School of Information Science and Engineering, Hunan Engineering Laboratory for Advanced Control and Intelligent Automation,  Central South University,  Changsha 410083, China)
  • Received:2013-06-03 Online:2014-07-28 Published:2014-07-28

摘要:

针对烧结余热回收存在的余热利用率不高、生产不稳定的难题,采用分析方法对某钢铁厂烧结余热回收系统进行研究,建立了评价系统运行效率的效率模型,并对不同运行工况下系统效率进行了计算分析. 在此基础上,建立效率优化模型,并通过粒子群算法进行求解. 根据不同入口余热资源量动态地调整蒸汽参数设定值,从而增加系统对变工况运行环境的适应能力. 基于工业运行数据的仿真结果表明,动态优化法可使烧结余热回收系统的效率提高4%~11%.
 

关键词: 余热回收, 效率, 蒸汽参数, 变工况, 动态优化

Abstract:

To solve the problems of low-utilization rate of waste heat and production instability in sintering waste heat recovery, the sintering waste heat recovery system of a steel plant was studied by adopting exergy analysis method, the exergy efficiency model was established for the operational efficiency evaluation system, and the exergy efficiency of the system under different operating conditions were analyzed, based on which the exergy efficiency optimization model was established and solved by particle swarm algorithm. The set value of steam conditions was dynamically adjuseted according to the waste heat resources in different entrances, thus increasing the system adaptability to changing environmental conditions. Simulation results based on industrial data show that the dynamic optimization method can improve the exergy efficiency of sintering waste heat recovery system by 4% to 11%.
 

Key words: waste heat recovery, exergy efficiency, steam parameters, varying duty, dynamic optimization

中图分类号: