上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (1): 1-15.doi: 10.16183/j.cnki.jsjtu.2023.287
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2023-06-30
修回日期:
2023-10-06
接受日期:
2023-10-19
出版日期:
2025-01-28
发布日期:
2025-02-06
通讯作者:
胡岳,高级工程师,博士生导师;E-mail:作者简介:
刘栋晨(2000—),硕士生,从事电力系统状态检测、硬件在环仿真研究.
基金资助:
LIU Dongchen1, JI Yu2, HU Yue2()
Received:
2023-06-30
Revised:
2023-10-06
Accepted:
2023-10-19
Online:
2025-01-28
Published:
2025-02-06
摘要:
我国能源转型持续深化,电气化交通发展迅速,现有交通制式将难以满足可再生能源高消纳需求,同时电网能源供给将难以承担负荷冲击压力.实现能源与交通融合发展成为当前新命题,车网互动(V2G)技术成为研究热点.首先,分析国内外V2G应用现状.其次,针对V2G技术的重要应用领域,梳理轨道交通V2G和新能源电动汽车V2G的研究实践现状,介绍了基于个人快速交通(PRT)系统的新型V2G模式,并将3种V2G模式进行关联和对比.最后,提出在“交能融合”理念下围绕V2G构建能源互联网的展望和研究重点.
中图分类号:
刘栋晨, 季昱, 胡岳. 交能融合V2G技术研究与实践综述[J]. 上海交通大学学报, 2025, 59(1): 1-15.
LIU Dongchen, JI Yu, HU Yue. Summary of Research and Practice on V2G Technology of Transportation and Energy Fusion[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 1-15.
表1
3种V2G模式关键区别
模式 | 车网能量交互方式 | 电力需求响应灵活度 | 储能容量 | 可再生能源消纳水平 | 应用规模与实施场景 |
---|---|---|---|---|---|
轨道交通V2G | 主要依靠再生制动,利用电机和能量回馈装置将一部分动能或势能转化为电能,再回馈至牵引网以实现车网能量交互 | 作为大型公共交通系统,能源需求通常按照固定时段和路线进行规划管理,需要持续供电以确保运营,不能随意中断或调整电力需求,电力需求响应灵活度较低 | 典型的电车和有轨电车通常具有较大的储能容量(50~300 kW·h),在运营过程中会定期充电,以确保能够满足行程的电力需求 | 具备大的储能容量,可以在尖峰时段提供额外的电能供应;且具有固定线路和停靠站点,系统能与可再生能源发电站直接相连,降低能源损耗,消纳水平较高 | 主要涉及特定区域内大型公共交通系统(如电车和地铁)与电网的能源互联,涉及发输变配电等环节,需要大量电力支撑和能量交互,V2G规模较大 |
新能源电动汽车V2G | 利用电动汽车的源特性和负载特性,将其电池视作并网储能系统,通过双向或单向潮流实现车网互联 | 车辆电池容量可支撑短期电力需求.通过V2G,车辆可以相对快速地进行充放电,以支持电网的短时需求峰值,实现电力需求响应,灵活度较高 | 车辆通常配备适当容量(54~60A·h)的电池储能系统,既能为短期电力需求提供支持,也能应急特定场景下的电网能量需求 | 电池容量较小,消纳可再生能源的能力较弱.需要通过适当的管理和调度策略,优化电池储能能力来提高消纳水平 | 在个人和商用、工业领域广泛使用,可跨城市跨地域,支持联网充放电,电力需求高,是当前主流V2G形式,应用规模大 |
基于 PRT的 V2G | 通过供电轨道与总电网连成分布式微能源互联网,利用PRT车载电池以虚拟储能电站的形式提供需求侧响应支撑 | 面向特定区域内个人用户的短途出行,电力需求波动较小.车辆搭载电池储能系统,能源储备分布可控,可以更快速地响应电力需求管理,能量需求响应灵活度高 | PRT车辆为轻量级交通工具,单个车体通常具有较小的电池容量,限制了它们在V2G中可以存储或释放的电能,需通过增加车辆数量进行弥补 | 车辆电池容量小,但由于能源储备分布可控,车辆间或车辆与站台间可以协调能量使用,平衡可再生能源的波动性,消纳水平较普通电动汽车高 | 在城市内部特定区域内依靠特定数量的车辆运行,相比其他两种形式V2G应用规模小,可以更紧密地集成到城市的能源管理系统中 |
[1] | 人民政协网. “十三五”期间,我国新建城轨线路里程超过前50年之和[EB/OL].(2022-10-15)[2023-09-05]. https://baijiahao.baidu.com/s?id=1746751663173445790&wfr=spider&for=pc.www.rmzxb.com.cn. |
People’s Political Consultative Conference Website. During the “13th Five-Year Plan” period, the mileage of China’s new urban rail lines exceeded that of the previous 50 years combined[EB/OL]. (2022-10-15) [2023-09-05]. https://baijiahao.baidu.com/s?id=1746751663173445790&wfr=spider&for=pc.www.rmzxb.com.cn. | |
[2] | 李泽贤. 对城市轨道交通配电系统设计中的节能方法探讨[J]. 电工技术, 2019(10): 147-149. |
LI Zexian. Discussion on energy saving methods in the design of urban rail transit distribution system[J]. Electric Engineering, 2019(10): 147-149. | |
[3] | 马静, 徐宏璐, 马瑞辰, 等. 能源交通融合下的弹性公路能源系统发展技术要点及展望[J]. 电网技术, 2023, 47(3): 885-896. |
MA Jing, XU Honglu, MA Ruichen, et al. Technical points and prospect of energy system development of elastic highway under energy and transportation integration[J]. Power System Technology, 2023, 47(3): 885-896. | |
[4] | YIN X H, LI L, LIU Q A. A study on the vulnerability cascade propagation of integrated energy systems in the transportation industry based on the petri network[J]. Energies, 2022, 15(12): 4320. |
[5] | 新浪财经. 新能源高比例并网,电力系统如何应对?[EB/OL]. (2020-11-10)[2023-02-17]. https://baijiahao.baidu.com/s?id=1682943560573787259& wfr=spider&for=pc. |
Sina Finance. How does the power system cope with the high proportion of new energy connected to the grid?[EB/OL]. (2020-11-10)[2023-02-17]. https://baijiahao.baidu.com/s?id=1682943560573787259& wfr=spider&for=pc. | |
[6] | 师瑞峰, 李少鹏. 电动汽车V2G问题研究综述[J]. 电力系统及其自动化学报, 2019, 31(6): 28-37. |
SHI Ruifeng, LI Shaopeng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 28-37. | |
[7] | MATT DE PREZ. FCA begins V2G pilot at Mirafiori plant[EB/OL]. (2020-05-21)[2023-09-28]. https://www.fleetnews.co.uk/news/manufacturer-news/2020/05/21/fca-begins-v2g-pilot-at-mirafiori-plant. |
[8] | ÜBERMASSER S, SANCHEZ R R, MADINA C, et al. Optimized and enhanced grid architecture for electric vehicles in Europe[J]. e+i Elektrotechnik und Informationstechnik, 2017, 134(1): 78-85. |
[9] | polisMOBILITY Magazine. Vehicle-to-grid: Polestar launches pilot project[EB/OL]. (2023-11-21) [2023-12-28]. https://www.polis-mobility.com/magazine/articles/polestar-launches-pilot-project.php. |
[10] | WANG M Y, CRAIG M T. The value of vehicle-to-grid in a decarbonizing California grid[J]. Journal of Power Sources, 2021, 513: 230472. |
[11] | CALSTART. Best practices on E-Bus and grid integration: A guide for California transit fleets[EB/OL]. (2023-03-22) [2023-12-28]. https://calstart.org/best-practices-on-e-bus-and-grid-integration-a-guide-for-california-transit-fleets. |
[12] | Hitachi Energy. Hitachi Energy successfully deploys first centralized EV bus charging system for Quebec City’s public transit agency, Réseau de transport de la Capitale (RTC)[EB/OL]. (2023-10-04) [2023-12-28]. https://www.hitachienergy.com/news/press-releases/2023/10/hitachi-energy-successfully-deploys-first-centralized-ev-bus-charging-system-for-quebec-citys-public-transit-agency-reseau-de-transport-de-la-capitale-rtc. |
[13] | Empire State Passengers Association. LIRR studying bi-mode battery-electric trains[EB/OL]. (2021-04-29) [2023-12-28]. https://www.esparail.org/news/lirr-studying-bi-mode-battery-electric-trains/. |
[14] | Clean Technica. Keystone, Schmeystone Part II: Air force nails biggest V2G fleet in the world[EB/OL]. (2014-11-24) [2023-12-28]. https://cleantechnica.com/2014/11/24/keystone-schmeystone-part-ii-air-force-nails-biggest-v2g-fleet-world/. |
[15] | ZHOU P, LUO S R, LI X Z, et al. Development status and application analysis of vehicle to grid (V2G)[J]. Journal of Donghua University (English Edition), 2019, 36(3): 284-292. |
[16] | 赵轩, 张元星, 李斌, 等. 国内外车网互动试点成效分析与发展建议[J]. 电力自动化设备, 2022, 42(10): 280-292. |
ZHAO Xuan, ZHANG Yuanxing, LI Bin, et al. Effect analysis and development suggestion of domestic and foreign vehicle grid integration pilots[J]. Electric Power Automation Equipment, 2022, 42(10): 280-292. | |
[17] | 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17): 1-8. |
NING Jian, JIANG Changming, ZHANG Zhe, et al. Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J]. Automation of Electric Power Systems, 2020, 44(17): 1-8. | |
[18] | 田立亭, 程林, 郭剑波, 等. 虚拟电厂对分布式能源的管理和互动机制研究综述[J]. 电网技术, 2020, 44(6): 2097-2108. |
TIAN Liting, CHENG Lin, GUO Jianbo, et al. A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J]. Power System Technology, 2020, 44(6): 2097-2108. | |
[19] | YANG Y, ZHANG B P, WANG W, et al. Development pathway and practices for integration of electric vehicles and Internet of energy[C]// 2020 IEEE Sustainable Power and Energy Conference. Chengdu, China: IEEE, 2020: 2128-2134. |
[20] | 江苏省政府国有资产监督管理委员会. 全国最大!无锡e-Park车网互动中心正式投运[EB/OL]. (2023-10-08)[2023-12-17]. http://jsgzw.jiangsu.gov.cn/art/2023/10/8/art_11703_11033608.html. . |
Jiangsu Provincial Government State-owned Assets Supervision and Administration Commision. The largest in the country! Wuxi e-Park vehicle network interaction center officially launched[EB/OL]. (2023-10-08)[2023-12-17]. http://jsgzw.jiangsu.gov.cn/art/2023/10/8/art_11703_11033608.html. | |
[21] | 上游新闻. 重庆公交首座光储充放能源管理综合示范站建成[EB/OL]. (2022-11-04)[2023-09-28]. https://baijiahao.baidu.com/s?id=1748536321637598723&wfr=spider&for=pc. |
Upstream News. Chongqing public transportation’s first comprehensive demonstration station for optical storage, charging and discharge energy management completed[EB/OL]. (2022-11-04)[2023-09-28]. https://baijiahao.baidu.com/s?id=1748536321637598723&wfr=spider&for=pc. | |
[22] | MARTINI J. The airport tram: The “Green Dolphin” in Kunming/China[EB/OL]. (2021-08-17)[2024-02-28]. https://www.urban-transport-magazine.com/en/the-airport-tram-the-green-dolphin-in-kunming-china/. |
[23] | SIDORENKO V G, KULAGIN M A, MIKHAILOV S V. Approach to predicting failures of traction electric motors[J]. Russian Electrical Engineering, 2022, 93(9): 592-595. |
[24] | 沈涛, 周巧莲. 城市轨道交通车辆电池应急牵引功能的实现[J]. 城市轨道交通研究, 2016, 19(7): 110-115. |
SHEN Tao, ZHOU Qiaolian. Implementation of rail transit vehicle emergency battery traction[J]. Urban Mass Transit, 2016, 19(7): 110-115. | |
[25] | 黄一鸣, 袁天辰, 杨俭. 高速列车弓网故障响应研究[J]. 测控技术, 2018, 37(8): 135-138. |
HUANG Yiming, YUAN Tianchen, YANG Jian. Research on fault response of pantograph and catenary system in high-speed train[J]. Measurement & Control Technology, 2018, 37(8): 135-138. | |
[26] | 李群湛. 城市轨道交通交流牵引供电系统及其关键技术[J]. 西南交通大学学报, 2015, 50(2): 199-207. |
LI Qunzhan. Industrial frequency single-phase AC traction power supply system and its key technologies for urban rail transit[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 199-207. | |
[27] | 宁晓芳, 柳拥军. 第三轨供电系统中受流器与第三轨的接触压力及其对受流性能的影响分析[J]. 城市轨道交通研究, 2020, 23(5): 106-109. |
NING Xiaofang, LIU Yongjun. Analysis of contact pressure between collector and conductor rail and its influence on current collecting performance in third rail power supply system[J]. Urban Mass Transit, 2020, 23(5): 106-109. | |
[28] | 朱剑, 朱成乾. 城市轨道交通列车再生能量吸收方式[J]. 中国科技信息, 2020(12): 39-40. |
ZHU Jian, ZHU Chengqian. Absorption mode of regenerative energy of urban rail transit trains[J]. China Science and Technology Information, 2020(12): 39-40. | |
[29] | YANG H M, SHEN W D, YU Q, et al. Coordinated demand response of rail transit load and energy storage system considering driving comfort[J]. CSEE Journal of Power and Energy Systems, 2020, 6(4): 749-759. |
[30] | 刘昊, 郑泽东, 李永东, 等. 电动汽车V2G技术在城市轨道交通牵引系统中的应用[J]. 控制与信息技术, 2018(5): 21-25. |
LIU Hao, ZHENG Zedong, LI Yongdong, et al. Application of electric vehicle V2G technology on urban rail traction system[J]. Control and Information Technology, 2018(5): 21-25. | |
[31] | KRUEGER H, FLETCHER D, CRUDEN A. Vehicle-to-Grid (V2G) as line-side energy storage for support of DC-powered electric railway systems[J]. Journal of Rail Transport Planning & Management, 2021, 19: 100263. |
[32] | 姚海英, 单宇, 程中国, 等. 城市轨道交通车辆无电网自走行技术的应用与探讨[J]. 城市轨道交通研究, 2020, 23(12): 148-154. |
YAO Haiying, SHAN Yu, CHENG Zhongguo, et al. Application and discussion of urban rail transit vehicle netless self-running technology[J]. Urban Mass Transit, 2020, 23(12): 148-154. | |
[33] | 何英静, 张希桢, 李晨, 等. 考虑牵引负荷的配电网附加损耗分析及应对措施[C]// 2017年“电子技术应用”智能电网会议论文集. 北京: 《电子技术应用》杂志社, 2017: 229-232. |
HE Yingjing, ZHANG Xizhen, LI Chen, et al. Analysis of additional loss of distribution network considering traction load and countermeasures[C]// Proceedings of the 2017 “Electronic Technology Application” Smart Grid Conference. Beijing, China: Application of Electronic Technique Press, 2017: 229-232. | |
[34] | IRFAN M M, RANGARAJAN S S, COLLINS E R, et al. Enhancing the power quality of the grid interactive solar photovoltaic-electric vehicle system[J]. World Electric Vehicle Journal, 2021, 12(3): 98. |
[35] |
李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266.
doi: 10.16183/j.cnki.jsjtu.2021.464 |
LI Jiaqi, XU Xiaoyuan, YAN Zheng. A review of coupled electricity and hydrogen energy system with transportation system under the background of large-scale new energy vehicles access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266. | |
[36] |
和萍, 宫智杰, 靳浩然, 等. 高比例可再生能源电力系统调峰问题综述[J]. 电力建设, 2022, 43(11): 108-121.
doi: 10.12204/j.issn.1000-7229.2022.11.011 |
HE Ping, GONG Zhijie, JIN Haoran, et al. Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric Power Construction, 2022, 43(11): 108-121.
doi: 10.12204/j.issn.1000-7229.2022.11.011 |
|
[37] | KUMANO T, HORITA M, SHINADA M, et al. A study on V2G based frequency control in power grid with renewable energy[J]. IFAC-PapersOnLine, 2019, 52(4): 99-104. |
[38] | 丁荣军, 张志学, 李红波. 轨道交通能源互联网的思考[J]. 机车电传动, 2016(1): 1-5. |
DING Rongjun, ZHANG Zhixue, LI Hongbo. An overview on rail transit energy Internet[J]. Electric Drive for Locomotives, 2016(1): 1-5. | |
[39] | 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29(8): 36-45. |
WENG Guoqing, ZHANG Youbing, QI Jun, et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 36-45. | |
[40] | 李佳. 含分布式可再生能源的主动配电网鲁棒优化调度[D]. 北京: 华北电力大学, 2019. |
LI Jia. Robust optimal scheduling of active distribution network with distributed renewable energy[D]. Beijing: North China Electric Power University, 2019. | |
[41] | SULAIMAN N, HANNAN M A, MOHAMED A, et al. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814. |
[42] | 王海鑫, 袁佳慧, 陈哲, 等. 智慧城市车-站-网一体化运行关键技术研究综述及展望[J]. 电工技术学报, 2022, 37(1): 112-132. |
WANG Haixin, YUAN Jiahui, CHEN Zhe, et al. Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 112-132. | |
[43] | 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27(2): 121-127. |
LIU Xiaofei, ZHANG Qianfan, CUI Shumei. Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 121-127. | |
[44] | 曹光宇, 金勇, 喻杰, 等. 国外V2G模式的发展现状分析[J]. 上海节能, 2017(3): 115-120. |
CAO Guangyu, JIN Yong, YU Jie, et al. Analysis on development situation of foreign V2G mode[J]. Shanghai Energy Conservation, 2017(3): 115-120. | |
[45] | CARDOSO G, STADLER M, BOZCHALUI M C, et al. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules[J]. Energy, 2014, 64: 17-30. |
[46] | BARONE G, BRUSCO G, MENNITI D, et al. How smart metering and smart charging may help a local energy community in collective self-consumption in presence of electric vehicles[J]. Energies, 2020, 13(16): 4163. |
[47] | MENA R, HENNEBEL M, LI Y F, et al. A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 778-793. |
[48] | 科普中国科学百科. 电动汽车V2G技术[EB/OL]. (2022-12-09)[2023-02-17]. https://baike.baidu.com/item/%E7%94%B5%E5%8A%A8%E6%B1%BD%E8%BD%A6V2G%E6%8A%80%E6%9C%AF/21501130?fr=aladdin. |
Science Encyclopedia of China. Electric vehicle V2G technology[EB/OL]. (2022-12-09)[2023-02-17]. https://baike.baidu.com/item/%E7%94%B5%E5%8A%A8%E6%B1%BD%E8%BD%A6V2G%E6%8A%80%E6%9C%AF/21501130?fr=aladdin. | |
[49] | YANG S, LUAN Z W, QIN Z. Research of charging (discharging) orderly and optimizing load curve for electric vehicles based on dynamic electric price and V2G[C]// 2016 Asia Conference on Power and Electrical Engineering. France: MATEC, 2016: 06006. |
[50] | 李怡然, 张姝, 肖先勇, 等. V2G模式下计及供需两侧需求的电动汽车充放电调度策略[J]. 电力自动化设备, 2021, 41(3): 129-135. |
LI Yiran, ZHANG Shu, XIAO Xianyong, et al. Charging and discharging scheduling strategy of EVs considering demands of supply side and demand side under V2G mode[J]. Electric Power Automation Equipment, 2021, 41(3): 129-135. | |
[51] | SHI R F, SUN C H, ZHOU Z Y, et al. A robust economic dispatch of residential microgrid with wind power and electric vehicle integration[C]// 2016 Chinese Control and Decision Conference. Yinchuan, China: IEEE, 2016: 3672-3676. |
[52] | SHI R F, LI S P, ZHANG P H, et al. Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization[J]. Renewable Energy, 2020, 153: 1067-1080. |
[53] | GAJDUK A, TODOROVSKI M, KURTHS J, et al. Improving power grid transient stability by plug-in electric vehicles[J]. New Journal of Physics, 2014, 16(11): 115011. |
[54] | EGBUE O, UKO C, ALDUBAISI A, et al. A unit commitment model for optimal vehicle-to-grid operation in a power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108094. |
[55] | MWASILU F, JUSTO J J, KIM E K, et al. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 501-516. |
[56] | FATHABADI H. Novel solar powered electric vehicle charging station with the capability of vehicle-to-grid[J]. Solar Energy, 2017, 142: 136-143. |
[57] | LUND H, KEMPTON W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy, 2008, 36(9): 3578-3587. |
[58] | HANNAN M A, MOLLIK M S, AL-SHETWI A Q, et al. Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations[J]. Journal of Cleaner Production, 2022, 339: 130587. |
[59] | HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: 126044. |
[60] | PREM P, SIVARAMAN P, SAKTHI SURIYA RAJ J S, et al. Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station[J]. Automatika, 2020, 61(4): 614-625. |
[61] | YU H, NIU S Y, SHANG Y T, et al. Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112812. |
[62] | 能源评论. 充电仍是补能主流 V2G呈现三大优势[EB/OL]. (2022-06-28)[2023-03-13]. https://www.dongchedi.com/article/7114220413873422859?zt=pc_redirect. |
Energy Review. Charging is still the mainstream of replenishment V2G presents three major advantages[EB/OL]. (2022-06-28)[2023-03-13]. https://www.dongchedi.com/article/7114220413873422859?zt=pc_redirect. | |
[63] | MITTELMAN G, KARIV Y, COHEN Y, et al. Techno-economic analysis of energy supply to personal rapid transit (PRT) systems[J]. Applied Energy, 2022, 306: 118006. |
[64] | MRAD M, HIDRI L. Optimal consumed electric energy while sequencing vehicle trips in a personal rapid transit transportation system[J]. Computers & Industrial Engineering, 2015, 79: 1-9. |
[65] | SUN S, WANG B. Low-energy mountain transportation system with PRT rail transit technology[J]. Journal of Landscape Research, 2020, 12(3): 18-20. |
[66] | 吴科佑, 许嘉宏, 韩钰婷. 某国际机场PRT交通系统工程供配电设计探讨[J]. 建筑电气, 2020, 39(9): 70-74. |
WU Keyou, XU Jiahong, HAN Yuting. Discussion on power supply and distribution design of PRT traffic system project in an international airport[J]. Building Electricity, 2020, 39(9): 70-74. | |
[67] | 刘亚宁, 刘家栋, 李桂安. PRT个人捷运系统的发展趋势及可行性研究[J]. 科技创新导报, 2020, 17(15): 114-115. |
LIU Yaning, LIU Jiadong, LI Guian. Development trend and feasibility study of PRT personal rapid transit system[J]. Science and Technology Innovation Herald, 2020, 17(15): 114-115. | |
[68] | 杨清峻. PRT交通系统发展现状及系统构成[J]. 价值工程, 2021, 40(7): 217-218. |
YANG Qingjun. PRT transportation system development status and system composition[J]. Value Engineering, 2021, 40(7): 217-218. | |
[69] |
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
doi: 10.16183/j.cnki.jsjtu.2021.027 |
LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. | |
[70] | MIAO Y, HYNAN P, VON JOUANNE A, et al. Current Li-ion battery technologies in electric vehicles and opportunities for advancements[J]. Energies, 2019, 12(6): 1074. |
[71] | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. |
[72] | YAVUZ D, FIGEN A. Using personal rapid transit as an effective transport solution in historical downtown areas: A case from Historic Kemeraltı, I ˙zmir[J]. Journal of Planning, 2023, 33(1): 86-104. |
[1] | 聂世豪, 陈磊, 郝玲, 徐飞, 闵勇, 窦真兰, 张春雁, 孙沛. 基于非侵入式负荷分解的空调集群AGC调频备用容量评估方法[J]. 上海交通大学学报, 2024, 58(12): 1892-1902. |
[2] | 白文超, 班明飞, 宋梦, 夏世威, 李知艺, 宋文龙. 电动汽车-无人机联合救援系统协调调度模型[J]. 上海交通大学学报, 2024, 58(9): 1443-1453. |
[3] | 杨森, 郭宁, 张寿明. 不确定性条件下农业微电网与灌溉系统相结合的鲁棒优化调度[J]. 上海交通大学学报, 2024, 58(9): 1432-1442. |
[4] | 孙毅, 谷家训, 郑顺林, 李熊, 陆春光, 刘炜. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658. |
[5] | 陈连福, 钟海旺, 谭振飞, 阮广春. 基于云模型综合相似度的电力物联网关键技术综合评价[J]. 上海交通大学学报, 2024, 58(1): 19-29. |
[6] | 姜恩宇, 陈宇, 施峥靖, 吴哲城, 林顺富, 李东东. 考虑碳配额引导需求响应的微电网能量管理策略[J]. 上海交通大学学报, 2023, 57(9): 1126-1136. |
[7] | 刘迪迪, 杨益菲, 杨玉荟, 邹艳丽, 王小华, 黎新. 随机环境下电动汽车充电实时管理与优化控制算法[J]. 上海交通大学学报, 2023, 57(1): 1-9. |
[8] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[9] | 李幸芝, 韩蓓, 李国杰, 汪可友, 徐晋. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993. |
[10] | 王兴志, 翟海保, 严亚勤, 吴庆曦. 基于数字孪生和深度学习的新一代调控系统预调度方法[J]. 上海交通大学学报, 2021, 55(S2): 37-41. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||