上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (9): 935-942.doi: 10.16183/j.cnki.jsjtu.2020.150
收稿日期:
2020-05-25
出版日期:
2020-09-28
发布日期:
2020-10-10
通讯作者:
滕金芳
E-mail:tjf@sjtu.edu.cn
作者简介:
庄皓琬(1996-),女,上海市人,硕士生,研究方向为航空宇航推进理论与工程
基金资助:
ZHUANG Haowan, TENG Jinfang(), ZHU Mingmin, QIANG Xiaoqing
Received:
2020-05-25
Online:
2020-09-28
Published:
2020-10-10
Contact:
TENG Jinfang
E-mail:tjf@sjtu.edu.cn
摘要:
为了量化轴流压气机叶片几何多种类加工公差对气动性能的综合影响,采用多种类几何加工公差的叶片三维模型构造方法,在设计点工况下,对压气机级样本进行三维计算流体力学数值模拟,并对样本叶片计算结果进行不确定性量化和敏感性分析.选择效率最高和最低的两个典型叶片几何误差案例,研究几何误差对出口流场的影响.结果表明:当压气机级处于设计工作状态时,全部位置度、扭转度和轮廓度公差范围内的叶片几何加工误差对样本叶片的质量流量、总压比、等熵效率、轴向推力和转矩等气动性能参数的平均影响可以忽略;转子叶片转矩的相对变化最大范围为-2.90%~2.30%.压气机级的质量流量和总压比对转子叶片各截面的扭转度公差敏感性最强,等熵效率则由转子叶片叶中截面扭转度、轴向位置度以及叶根截面的轴、周向位置度决定.几何误差的综合作用导致两案例转子叶片的等熵效率较原型的最大相对误差分别为+0.31%和-0.46%.转子叶片出口截面的径向相对总压损失和出口熵云图分布显示,典型几何误差对叶片通道内气流的流通和增压能力均有影响.
中图分类号:
庄皓琬, 滕金芳, 朱铭敏, 羌晓青. 考虑加工公差的叶片对压气机气动性能的影响[J]. 上海交通大学学报, 2020, 54(9): 935-942.
ZHUANG Haowan, TENG Jinfang, ZHU Mingmin, QIANG Xiaoqing. Impacts of Blades Considering Manufacturing Tolerances on Aerodynamic Performance of Compressor[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 935-942.
[1] | ZHENG S Y, TENG J F, WU Y, et al. Impact of nonuniform stagger angle distribution on high-pressure compressor rotor performance[C]//Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2018: GT2018-76067. |
[2] | GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015,137(2):021007. |
[3] | REITZ G, SCHLANGE S, FRIEDRICHS J, Design of experiments and numerical simulation of deteriorated high pressure compressor airfoils[C]//Proceedings of ASME Conference on ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2016: GT2016-56024. |
[4] | 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017,38(3):525-531. |
GAO Limin, CAI Yutong, ZENG Ruihui, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017,38(3):525-531. | |
[5] | TENG X, CHU W L, ZHANG H G, , et al. The influence of geometry deformation on a multistage compressor[C]//Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2018: GT2018-75935. |
[6] | 高丽敏, 蔡宇桐, 徐浩亮, 等. 压气机叶片加工误差影响不确定分析[J]. 航空动力学报, 2017,32(9):2253-2259. |
GAO Limin, CAI Yutong, XU Haoliang, et al. Uncertainty analysis of machining error influence of compressor blade[J]. Journal of Aerospace Power, 2017,32(9):2253-2259. | |
[7] | 郑似玉, 滕金芳, 羌晓青. 轮廓度加工超差对压气机气动性能影响的数值研究[J]. 科学技术与工程, 2016,16(29):317-320. |
ZHENG Siyu, TENG Jinfang, QIANG Xiaoqing. Numerical investigation of profile variability on axial compressor flow field performance[J]. Science Technology and Engineering, 2016,16(29):317-320. | |
[8] | 郑似玉, 滕金芳, 羌晓青. 位置度超差对轴流压气机流场性能影响的数值研究[J]. 流体机械, 2016,44(11):20-24. |
ZHENG Siyu, TENG Jinfang, QIANG Xiaoqing. Numerical investigation of positional variability on axial compressor flow field performance[J]. Fluid Machinery, 2016,44(11):20-24. | |
[9] | MONTOMOLI F, CARNEVALE M, D’AMMARO A, et al. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. Cham: Springer International Publishing, 2015: 33-57. |
[10] | LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2012,134(11):112601. |
[11] | LEJON M, ANDERSSON N, ELLBRANT L, , et al. The impact of manufacturing variations on performance of a transonic axial compressor rotor[C]//Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2018: GT2018-76340. |
[12] | SCHNELL R, LENGYEL K T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turboma-chinery, 2014,136(9):091005. |
[13] | GHISU T, PARKS G T, JARRETT J P, et al. Adaptive polynomial chaos for gas turbine compression systems performance analysis[J]. AIAA Journal, 2010,48(6):1156-1170. |
[14] | 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报, 2017,38(3):490-497. |
CAI Yutong, GAO Limin, MA Chi, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017,38(3):490-497. | |
[15] | LI Z H, LIU Y M, AGARWAL R K, Robust optimization design of single-stage transonic axial compressor considering the manufacturing uncertainties[C]//Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2018: GT2018-75415. |
[16] | SCHMIDT R, VOIGT M, VOGELER K, , et al. Comparison of two methods for sensitivity analysis of compressor blades[C]//Proceedings of ASME Conference on ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2016: GT2016-57378. |
[17] | LUO J Q, LIU F. Performance impact of manufacturing tolerances for a turbine blade using second order sensitivities[C]//Proceedings of ASME Conference on ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Houston, America: International Gas Turbine Institute, 2018: GT2018-75999. |
[18] | 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018,54(2):216-224. |
ZHENG Siyu, TENG Jinfang, QIANG Xiaoqing. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018,54(2):216-224. | |
[19] | DOW E A, WANG Q Q. The implications of tolerance optimization on compressor blade design[J]. Journal of Turbomachinery, 2015,137(10):101008. |
[20] | 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: HB 5647—1998[S]. 北京: 中国航空工业总公司, 1999. |
Aviation Industry Corporation of China. Tolerance and blade surface roughness: HB 5647—1998[S]. Beijing: AVIC, 1999. |
[1] | 闯振菊, 李春郑, 刘社文. 风机叶片结冰对其一体化结构动态响应影响的数值分析[J]. 上海交通大学学报, 2022, 56(9): 1176-1187. |
[2] | 肖克华, 罗稼昊, 饶宇. 航空发动机涡轮叶片尾缘楔形通道交错肋冷却实验[J]. 上海交通大学学报, 2022, 56(8): 1034-1042. |
[3] | 张俊涛, 刘晓晶, 张滕飞, 柴翔. 子通道程序对PSBT空泡分布实验计算的不确定性量化分析[J]. 上海交通大学学报, 2022, 56(10): 1420-1426. |
[4] | 曹宇, 韩兆龙, 周岱, 雷航. 对转式垂直轴风力机气动性能研究[J]. 上海交通大学学报, 2021, 55(2): 141-148. |
[5] | 吴亚东, 李涛, 张永杰. 基于圆弧斜缝处理机匣的压气机叶顶泄漏流实验和数值研究[J]. 上海交通大学学报, 2020, 54(7): 745-755. |
[6] | 谭顿,陶建峰,陈良深,王旭永. 叶片摩擦系数对液压凸轮转子伺服马达转矩性能影响[J]. 上海交通大学学报, 2020, 54(2): 160-166. |
[7] | 柴象海,张执南,阎军,刘传欣. 航空发动机风扇叶片冲击加强轻量化设计[J]. 上海交通大学学报, 2020, 54(2): 186-192. |
[8] | 张科, 吴亚东. 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020, 54(10): 1024-1034. |
[9] | 张强,朱彦楠,陶建峰,王旭永. 基于热特性的凸轮转子叶片马达密封间隙优化[J]. 上海交通大学学报, 2019, 53(6): 647-653. |
[10] | 潘丁浩,吴亚东,彭志刚,欧阳华,杜朝辉. 非均布轴流风扇叶片力特性及其尖峰噪声特性预测[J]. 上海交通大学学报, 2019, 53(6): 673-680. |
[11] | 彭志刚,欧阳华,吴亚东,田杰. 基于动-静叶片相位调制的冷却风扇离散噪声控制[J]. 上海交通大学学报(自然版), 2019, 53(4): 396-404. |
[12] | 王鹏,崔玉超,陈迎春,张晓东,邓志,卢少鹏,滕金芳. 宽体客机反推格栅气动性能实验与数值模拟研究[J]. 上海交通大学学报(自然版), 2019, 53(4): 413-422. |
[13] | 胡良权,陈进格,沈昕,竺晓程,杜朝辉. 结冰对风力机载荷的影响[J]. 上海交通大学学报(自然版), 2018, 52(8): 904-909. |
[14] | 朱彦楠1,张强1,陈立峰2,陶建峰1,王旭永1. 基于效率分析的凸轮转子叶片马达液膜厚度设计[J]. 上海交通大学学报(自然版), 2018, 52(6): 715-721. |
[15] | 陆嘉华,羌晓青,滕金芳,余文胜. 鸟撞损伤风扇气动性能的适航符合性研究[J]. 上海交通大学学报(自然版), 2017, 51(8): 932-938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||