上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 992-999.doi: 10.16183/j.cnki.jsjtu.2017.08.014
汤腾飞1,张俊2,赵艳芹1
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
TANG Tengfei1,ZHANG Jun2,ZHAO Yanqin1
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 针对Exechon并联模块动平台摆角范围较小的问题,提出了一种拓扑构型为2RPU&1RPS的类Exechon并联模块.在前期完成的概念设计基础上,对类Exechon并联模块进行了自由度计算及运动学逆解分析.采用子结构综合法,建立了计及关节弹性变形和支链体柔性的类Exechon并联模块弹性静力学模型.依托所建模型,计算了该类并联模块极限位姿下动平台的弹性位移和关节约束反力(力矩),并进一步给出了两者在工作空间内的映射.研究表明,模块自重对类Exechon并联模块动平台的弹性位移和关节约束反力(力矩)具有重要影响,其静力学特性在工作空间内随位姿变化明显,且在沿z向的工作截面上呈对称性映射.
中图分类号:
汤腾飞1,张俊2,赵艳芹1. 类Exechon并联模块弹性静力学建模与分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 992-999.
TANG Tengfei1,ZHANG Jun2,ZHAO Yanqin1. Kinetostatic Modeling and Analysis of
an ExeVariant Parallel Kinematic Machine[J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 992-999.
[1]CUANUrquizo E, RODRIGUEZLeal E. Kinematic analysis of the 3CUP parallel mechanism[J]. Robotics and ComputerIntegrated Manufacturing, 2013, 29(5): 382395. [2]XIE F, LIU X J, LI T. Type synthesis and typical application of 1T2Rtype parallel robotic mechanisms[J]. Mathematical Problems in Engineering, 2013 (9): 497504. [3]ZHANG D, GOSSELIN C M. Kinetostatic analysis and design optimization of the tricept machine tool family[J]. Journal of Manufacturing Science and Engineering, 2002, 124(3): 725733. [4]HENNES N. Ecospeedan innovative machinery concept for high performance 5axis machining of large structural components in aircraft engineering[C]//3rd Chemnitz Parallel Kinematic Seminar. Zwickau: Verlag Wissenschaftliche Scripten, 2002: 763774. [5]LI Y G, LIU H T, ZHAO X M, et al. Design of a 3DOF PKM module for large structural component machining[J]. Mechanism and Machine Theory, 2010, 45(6): 941954. [6]NEUMANN K E. Exechon concept[J]. Parallel Kinematic Machines in Research and Practice, 2006, 33: 787802. [7]李彬, 黄田, 刘海涛, 等. Exechon 混联机器人的三自由度并联机构模块位置分析[J]. 中国机械工程, 2010 (23): 27852789. LI Bin, HUANG Tian, LIU Haitao, et al. Position analysis of a 3DOF PKM module for a 5DOF hybrid robot Exechon[J]. Chinese Journal of Mechanical Engineering, 2010 (23): 27852789. [8]ZHANG J, ZHAO Y Q, JIN Y. Kinetostaticmodelbased stiffness analysis of Exechon PKM[J]. Robotics and ComputerIntegrated Manufacturing, 2015, 37(C): 208220 [9]ZHANG J, ZHAO Y Q, JIN Y. Elastodynamic Modeling and analysis for an Exechon parallel kinematic machine[J]. Journal of Manufacturing Science and Engineering, 2016, 138(3): 031011. [10]BI Z M, KANG B. An inverse dynamic model of overconstrained parallel kinematic machine based on NewtonEuler formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(4): 041001. [11]BI Z M, JIN Y. Kinematic modeling of Exechon parallel kinematic machine[J]. Robotics and ComputerIntegrated Manufacturing, 2011, 27(1): 186193. [12]TANG T F, ZHAO Y Q, ZHANG J, et al. Conceptual design and workspace analysis of an Exechoninspired parallel kinematic machine[C]//Advances in Reconfigurable Mechanisms and Robots II. Switzerland: Springer International Publishing, 2016: 445453. [13]付红栓, 赵恒华, 杨辉. 3TPT型并联机床静力学及刚度研究[J]. 组合机床与自动化加工技术, 2013(1): 4244. FU Hongshuan, ZHAO Henghua, YANG Hui. Study on the statics and stiffness of 3TPT parallel machine tool[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(1): 4244. [14]PIRAS G, CLEGHORN W L, MILLS J K. Dynamic finiteelement analysis of a planar highspeed, highprecision parallel manipulator with flexible links[J]. Mechanism & Machine Theory, 2005, 40(7):849862. [15]KLIMCHIK A, CHABLAT D, PASHKEVICH A. Stiffness modeling for perfect and nonperfect parallel manipulators under internal and external loadings[J]. Mechanism and Machine Theory, 2014, 79: 128. [16]落海伟, 张俊, 王辉, 等. 3RPS并联机构静刚度建模方法[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(09): 797803. LUO Haiwei, ZHANG Jun, WANG Hui, et al. Static stiffness modeling method of 3RPS PKM[J]. Journal of Tianjin University (Science and Technology), 2015, 48(09): 797803. [17]黄真. 高等空间机构学[M]. 北京:高等教育出版社, 2006. [18]MAJOU F, GOSSELIN C, WENGER P, et al. Parametric stiffness analysis of the Orthoglide[J]. Mechanism and Machine Theory, 2007, 42(3): 296311. |
[1] | 吴灌伦, 施光林. 双并联机构耦合连续体机械臂的设计与实现[J]. 上海交通大学学报, 2022, 56(6): 809-817. |
[2] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[3] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[4] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[5] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[6] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[7] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[8] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[9] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[10] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[11] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[12] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[13] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[14] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[15] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||