上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 939-945.doi: 10.16183/j.cnki.jsjtu.2017.08.007
尹金鸽1,孔维梁1,王福新1,刘洪1,杨坤2
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
YIN Jinge1,KONG Weiliang1,WANG Fuxin1, LIU Hong1,YANG Kun2
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 针对目前结冰环境的粒径演化研究仍基于常温水滴碰撞结果与实际过冷情况差别大的问题,设计实验研究了常温与过冷水滴碰撞行为的差别:通过水滴发生器产生两水滴链并以一定角度碰撞,其过程通过高速相机记录.实验中水滴的碰撞韦伯数范围为0~100,温度范围为25~-5℃.结果发现,随着温度的降低,水滴碰撞结果发生明显的改变:① 合并区域向分离区域扩展;② 反射分离区域向高韦伯数方向移动;③ 拉伸分离区域向高碰撞参数方向移动.分析显示水滴的表面张力和黏性变化是导致该结果的主要原因.这说明过冷水雾碰撞演化将导致粒径明显大于以常温水滴碰撞模型预测的结果.
中图分类号:
尹金鸽1,孔维梁1,王福新1,刘洪1,杨坤2. 过冷水滴碰撞过程的实验研究[J]. 上海交通大学学报(自然版), 2017, 51(8): 939-945.
YIN Jinge1,KONG Weiliang1,WANG Fuxin1, LIU Hong1,YANG Kun2. Experimental Investigation of Binary Supercooled
Water Droplet Collision [J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 939-945.
[1]VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥4th AIAA Atmospheric and Space Environments Conference. New Orleans: AIAA, 2012: 2933. [2]THOMPSON G, POLITOVICH M. A numerical weather model’s ability to predict aircraft and ground icing environments[C]∥6th AIAA Atmospheric and Space Environments Conference. Atlanta: AIAA, 2014: 2066. [3]KOLLR L E, FARZANEH M, KAREV A R. The role of droplet collision, evaporation and gravitational settling in the modeling of twophase flows under icing conditions[C]∥Proceeding of 11th International Workshop on Atmospheric Icing of Structures. Montréal: IWAIS XI, 2005. [4]BORD S R, HAGEMEIER T, THVENIN D. Experimental investigation of dropletdroplet interactions[C]∥23rd European Conference on Liquid Atomization and Spray Systems. Berlin: Freie Universitt, 2010: 198.1198.6. [5]Department of Transportation, Federal Aviation Administration. Federal register: Part III[R]. Washington: Federal Aviation Administration, 2014. [6]BRAZIERSMITH P R, JENNINGS S G, LATHAM J. The interaction of falling water drops: Coalescence[C]∥Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 1972: 393408. [7]GOTAAS C, HAVELKA P, JAKOBSEN H A, et al. Effect of viscosity on dropletdroplet collision outcome: Experimental study and numerical comparison[J]. Physics of Fluids, 2007, 19(10): 102106. [8]ASHGRIZ N, POO J Y. Coalescence and separation in binary collisions of liquid drops[J]. Journal of Fluid Mechanics, 1990, 221: 183204. [9]ESTRADE J P, CARENTZ H, LAVERGNE G, et al. Experimental investigation of dynamic binary collision of ethanol droplets—A model for droplet coalescence and bouncing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 486491. [10]BRENN G, VALKOVSKA D, DANOV K D. The formation of satellite droplets by unstable binary drop collisions[J]. Physics of Fluids, 2001, 13(9): 24632477. [11]O’ROURKE P J, BRACCO F V. Modeling of drop interactions in thick sprays and a comparison with experiments[J]. Proceedings of the Institution of Mechanical Engineers, 1980, 9: 101106. [12]KO G H, RYOU H S. Droplet collision processes in an interspray impingement system[J]. Journal of Aerosol Science, 2005, 36(11): 13001321. [13]BUTTERSACK T, BAUERECKER S. Critical radius of supercooled water droplets: On the transition toward dendritic freezing[J]. The Journal of Physical Chemistry B, 2016, 120(3): 504512. [14]JIANG Y J, UMEMURA A, LAW C K. An experimental investigation on the collision behaviour of hydrocarbon droplets[J]. Journal of Fluid Mechanics, 1992, 234: 171190. [15]YI N, HUANG B, DONG L, et al. Temperatureinduced coalescence of colliding binary droplets on superhydrophobic surface[J]. Scientific Reports, 2014, 4: 4303. [16]QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331: 5980. [17]RABE C, MALET J, FEUILLEBOIS F. Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number[J]. Physics of Fluids, 2010, 22(4): 047101. [18]KUSCHEL M, SOMMERFELD M. Investigation of droplet collisions for solutions with different solids content[J]. Experiments in Fluids, 2013, 54(2): 117. [19]HALLETT J. The temperature dependence of the viscosity of supercooled water[J]. Proceedings of the Physical Society, 1963, 82(6): 1046. [20]VARGAFTIK N B, VOLKOV B N, VOLJAK L D. International tables of the surface tension of water[J]. Journal of Physical and Chemical Reference Data, 1983, 12(3): 817820. [21]PLANCHETTE C, LORENCEAU E, BRENN G. The onset of fragmentation in binary liquid drop collisions[J]. Journal of Fluid Mechanics, 2012, 702: 525. |
[1] | 杨振,付庄,管恩广,徐建南,田仕禾,郑辉. MLattice模块机器人的运动学分析及构型优化[J]. 上海交通大学学报(自然版), 2017, 51(10): 1153-1159. |
[2] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[3] | 赵子任1,杜世昌1,黄德林1,任斐2,梁鑫光2. 多工序制造系统暂态阶段产品质量 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1166-1173. |
[4] | 黄炫圭. 小边概率条件下较小植入团的算法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1202-1206. |
[5] | 罗晶晶a,余海东a,赵春璋a,b,王皓a,b. 基于绝对节点坐标法变截面柔性梁运动稳定性研究[J]. 上海交通大学学报(自然版), 2017, 51(10): 1174-1180. |
[6] | 汪一波1,黄亦翔1,李炳初1,凌晓1,赵帅1,刘成良1,张大庆2. 一种基于静力学预计算的开关磁阻电机模态仿真方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1181-1188. |
[7] | 周炳海,黎明. 考虑机器人约束加工的制造单元调度方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1214-1219. |
[8] | 陈进平1,张树生1,何卫平1,王明微1,黄晖2. 基于驱动参数建模的可行更改路径搜索和优选方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1220-1227. |
[9] | 周鹏辉,马红占,陈东萍,陈梦月,褚学宁. 基于模糊随机故障模式与影响分析的 产品再设计模块识别[J]. 上海交通大学学报(自然版), 2017, 51(10): 1189-1195. |
[10] | 彭程,朱剑昀,陈俐. 基于模型参考控制的混合动力汽车模式切换 [J]. 上海交通大学学报(自然版), 2017, 51(10): 1196-1201. |
[11] | 柳伟,杨超. 基于反向传播神经网络的注塑模具用零件报价模型[J]. 上海交通大学学报(自然版), 2017, 51(10): 1207-1213. |
[12] | 陈苏婷,王卓,王奇. 基于非线性尺度空间的航拍场景分类[J]. 上海交通大学学报(自然版), 2017, 51(10): 1228-1234. |
[13] | 陈宁,贺小滨,桂卫华,阳春华. 基于混沌离散序列的图像加密算法研究[J]. 上海交通大学学报(自然版), 2017, 51(10): 1273-1280. |
[14] | 刘凯a,张立民b,周立军a. 随机受限玻尔兹曼机组设计[J]. 上海交通大学学报(自然版), 2017, 51(10): 1235-1240. |
[15] | 朱信尧1,宋保维2,徐刚1,杨松林1. 支撑机构驻留水下航行器着陆策略及影响因素[J]. 上海交通大学学报(自然版), 2017, 51(10): 1241-1251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||