上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (10): 1202-1206.doi: 10.16183/j.cnki.jsjtu.2017.10.008

• 兵器工业 • 上一篇    下一篇

 小边概率条件下较小植入团的算法

 黄炫圭   

  1.  上海交通大学  上海高校软件理论研究中心, 上海 200240
  • 出版日期:2017-10-31 发布日期:2017-10-31
  • 基金资助:
     

 Algorithm for Relatively Small Planted Clique with
 Small Edge Probability

 HUANG Xuangui   

  1.  Laboratory of BASICS, Shanghai Jiao Tong University, Shanghai 200240, China
  • Online:2017-10-31 Published:2017-10-31
  • Supported by:
     

摘要:  针对植入团问题是平均情况复杂性理论的一个中心问题,将带植入团的随机图模型进行推广,提出小边概率条件,使得边概率可以随着顶点数目的增大而变小.使用随机算法分析中的概率工具,改进文献中算法的分析,证明在小边概率条件下,存在以很大概率找到推广模型中较小的植入团的多项式时间随机算法.

关键词:  , 随机图, 植入团, 小边概率条件, 随机算法, 平均情况复杂性

Abstract:  Planted clique problem is a central problem in averagecase complexity theory. The random graph with planted clique model is extended, and small edge probability conditions are invented to allow the edge probability to decrease. It is shown that under such conditions there exists a polynomialtime randomized algorithm to find a relatively small planted clique by using probability tools for analysis of randomized algorithms. The result improves analysis of the algorithm in the literature.

Key words:  , random graph, planted clique, small edge probability, randomized algorithm, average case complexity

中图分类号: