上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (3): 368-378.doi: 10.16183/j.cnki.jsjtu.2020.278
收稿日期:
2020-09-02
出版日期:
2022-03-28
发布日期:
2022-04-01
通讯作者:
张媛
E-mail:zhangyuan@hrbeu.edu.cn
作者简介:
王 超(1981-),男,安徽省宿州市人,副教授,博士生导师,主要研究方向为冰区船舶航行性能预报及其分析技术.
基金资助:
WANG Chao, YANG Bo, ZHANG Yuan(), GUO Chunyu, YE Liyu
Received:
2020-09-02
Online:
2022-03-28
Published:
2022-04-01
Contact:
ZHANG Yuan
E-mail:zhangyuan@hrbeu.edu.cn
摘要:
为研究近场动力学(PD)方法在冰力学行为领域的应用特性及在冰破坏数值预报过程中的参数敏感性,采用常规状态型近场动力方法系统地计算分析了冰柱冲击破坏过程,并进行了参数敏感分析.结果表明:该方法模拟冰冲击过程与试验对比结果基本一致,在选定的时间步长和粒子间距下本文的计算结果收敛.海冰冲击速度、泊松比、弹性模量对海冰冲击过程影响明显,而海冰尺寸和断裂韧度对冲击过程影响较小.文章创新之处在于将状态型PD方法应用于海冰冲击问题中,弥补了键型PD方法限制海冰泊松比的缺点.
中图分类号:
王超, 杨波, 张媛, 郭春雨, 叶礼裕. 冰柱冲击问题的数值仿真分析[J]. 上海交通大学学报, 2022, 56(3): 368-378.
WANG Chao, YANG Bo, ZHANG Yuan, GUO Chunyu, YE Liyu. Numerical Simulation and Analysis of Cylindrical Ice Impacting Problem[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 368-378.
[1] | KEUNE J. Development of a hail ice impact model and the dynamic compressive strength properties of ice[D]. West Lafayette, USA: Purdue University, 2004. |
[2] | KIM H, KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 38(7):1278-1288. |
[3] | PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact[J]. International Journal of Impact Engineering, 2010, 37(2):177-184. |
[4] | TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering, 2013, 57:43-54. |
[5] | GUO C Y, ZHANG Z T, TIAN T P, et al. Numerical simulation on the resistance performance of ice-going container ship under brash ice conditions[J]. China Ocean Engineering, 2018, 32(5):546-556. |
[6] | XU Y, HU Z, RINGSBERG J et al. An ice material model addressing the influence of strain rate, temperature, confining pressure and porosity[C]//Proceedings of the 7th International Conference on Marine Structures (MARSTRUCT). Dubrovnik, Croatia: CRC Press, 2019. |
[7] | XU Y, HU Z Q, RINGSBERG J W, et al. Nonli-near viscoelastic-plastic material modelling for the behaviour of ice in ice-structure interactions[J]. Ocean Engineering, 2019, 173:284-297. |
[8] | 王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究[D]. 上海: 上海交通大学, 2019. |
WANG Feng. Numerical research on the interactions between marine structures and level ice based on cohesive element model[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[9] | 王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16):153-158. |
WANG Feng, ZOU Zaojian, REN Yizhou. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16):153-158. | |
[10] | MINTU S, MOLYNEUX D. Simulation of ice-structure interactions using a coupled SPH-DEM method[C]//OTC Arctic Technology Conference. Houston, Texas, USA: OTC Press, 2018. |
[11] | SONG Y, YU H C, KANG Z. Numerical study on ice fragmentation by impact based on non-ordinary state-based peridynamics[J]. Journal of Micromechanics and Molecular Physics, 2019, 4(1):1850006. |
[12] | JAVILI A, MORASATA R, OTERKUS E, et al. Peridynamics review[J]. Mathematics and Mechanics of Solids, 2019, 24(11):3714-3739. |
[13] | SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209. |
[14] | NGUYEN C T, OTERKUS S. Ordinary state-based peridynamic model for geometrically nonlinear analysis[J]. Engineering Fracture Mechanics, 2020, 224:106750. |
[15] | DIYAROGLU C. Peridynamics and its applications in marine structures[D]. Glasgow, United Kingdom: University of Strathclyde, 2016. |
[16] | DIEHL P, PRUDHOMME S, LÉVESQUE M. A review of benchmark experiments for the validation of peridynamics models[J]. Journal of Peridynamics and Nonlocal Modeling, 2019, 1(1):14-35. |
[17] | BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of peridynamic modeling[M]. New York, USA: Chapman and Hall/CRC, 2015. |
[18] | YE L Y, GUO C Y, WANG C, et al. Peridynamic solution for submarine surfacing through ice[J]. Ships and Offshore Structures, 2020, 15(5):535-549. |
[19] | LIU M H, WANG Q, LU W. Peridynamic simulation of brittle-ice crushed by a vertical structure[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(2):209-218. |
[20] | ASGARI M, KOUCHAKZADEH M A. An equivalent von Mises stress and corresponding equivalent plastic strain for elastic-plastic ordinary peridynamics[J]. Meccanica, 2019, 54(7):1001-1014. |
[21] | YE L Y, WANG C, CHANG X, et al. Propeller-ice contact modeling with peridynamics[J]. Ocean Engineering, 2017, 139:54-64. |
[22] | MADENCI E, OTERKUS E. Peridynamic theory[M]. New York, USA: Springer, 2013. |
[23] | LITTLEWOOD D J. Roadmap for peridynamic software implementation[M]. New York, USA: Chapman and Hall/CRC, 2015. |
[24] | GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J]. Continuum Mechanics and Thermodynamics, 2019, 31(4):907-937. |
[25] | WANG Q, WANG Y, ZAN Y F, et al. Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion[J]. Journal of Marine Science and Technology, 2018, 23(1):52-66. |
[26] | MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening[J]. Journal of the Mechanics and Physics of Solids, 2016, 86:192-219. |
[27] | CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures, 2006, 43(25/26):7820-7839. |
[28] | WEEKS W, ASSUR A. The mechanical properties of sea ice[J]. Journal of Energy Resources Technology, 1967, 101(3):196-202. |
[29] | TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2):107-129. |
[1] | 秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158. |
[2] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[3] | 欧阳旭宇, 常海超, 刘祖源, 冯佰威, 詹成胜, 程细得. 自适应采样方法在船型优化中的应用[J]. 上海交通大学学报, 2022, 56(7): 937-943. |
[4] | 李鹏, 王超, 孙华伟, 郭春雨. 潜艇阻力及流场数值仿真策略优化分析[J]. 上海交通大学学报, 2022, 56(4): 506-515. |
[5] | 赵勇, 苏丹. 基于4种长短时记忆神经网络组合模型的畸形波预报[J]. 上海交通大学学报, 2022, 56(4): 516-522. |
[6] | 代燚, 陈作钢, 王飞. 海洋平台风载荷试验不确定度分析[J]. 上海交通大学学报, 2022, 56(3): 361-367. |
[7] | 丁明, 孟帅, 王书恒, 夏玺. 六自由度波浪补偿平台的神经网络自适应反馈线性化控制[J]. 上海交通大学学报, 2022, 56(2): 165-172. |
[8] | 王运龙, 姜云博, 管官, 邢佳鹏, 于光亮. 基于知识工程的船舶机舱设备三维布局设计[J]. 上海交通大学学报, 2021, 55(10): 1219-1227. |
[9] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[10] | 周小宇, 李红霞, 黄一. C11集装箱船参数横摇运动极值响应分析[J]. 上海交通大学学报, 2021, 55(8): 984-989. |
[11] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[12] | 袁心怡, 苏焱, 刘祖源. 基于高精度Boussinesq方程的三维浅水晃荡数值研究[J]. 上海交通大学学报, 2021, 55(5): 521-526. |
[13] | 白旭, 杨苏杰. 过冷度影响海水结冰形状与速度的相场模拟[J]. 上海交通大学学报, 2021, 55(5): 513-520. |
[14] | 王超, 杨波, 汪春辉, 郭春雨, 徐佩. 螺旋桨抽吸作用下冰块运动轨迹[J]. 上海交通大学学报, 2021, 55(5): 505-512. |
[15] | 吴利红, 封锡盛, 叶作霖, 李一平. 自主水下机器人强制自航下潜的类物理模拟[J]. 上海交通大学学报, 2021, 55(3): 290-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||