Engieering and Technology

Wideband Microstrip-to-Microstrip Vialess Vertical Transition Based on Multilayer Liquid Crystal Polymer Technology

Expand
  • School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Accepted date: 2022-09-21

  Online published: 2025-03-21

Abstract

A Ka-band wideband microstrip-to-microstrip (MS-to-MS) vialess vertical transition on slotline multimode  resonator (MMR) is presented. The proposed transition mainly consists of a slotline MMR on the common  ground plane, and two microstrip (MS) lines facing each other at the top and third layers in the four-layered liquid  crystal polymer (LCP) substrate. In order to improve the bandwidth of the proposed transition, a U-shaped  branch is added to the top- and third-layer MS lines, separately. The slotline MMR can be properly excited by  setting the position of the U-shaped branch line. As such, a three-pole wideband vertical transition is obtained,  which shows a good transmission performance over a wide frequency range of 29.27—39.95 GHz. The three-pole  wideband vertical transition based on multilayer LCP substrate is designed, fabricated, and measured. Test results  indicate that a wide frequency range of 26.84—36.26 GHz can be obtained with return loss better than −10 dB  and insertion loss less than −3dB.

Cite this article

LIU Weihong , GUAN Dongyang , HUANG Qian , CHEN Liuyang, ZHANG Menglin . Wideband Microstrip-to-Microstrip Vialess Vertical Transition Based on Multilayer Liquid Crystal Polymer Technology[J]. Journal of Shanghai Jiaotong University(Science), 2025 , 30(2) : 220 -226 . DOI: 10.1007/s12204-023-2621-z

References

[1] VALOIS R, BAILLARGEAT D, VERDEYME S, et al. High performances of shielded LTCC vertical transitions  from DC up to 50GHz [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(6): 2026- 2032. 

[2] CASARES-MIRANDA F P, VIERECK C, CAMACHO-PENALOSA C, et al. Vertical microstrip  transition for multilayer microwave circuits  with decoupled passive and active layers [J]. IEEE Microwave and Wireless Components Letters, 2006, 16(7): 401-403. 

[3] LI E S, CHENG J C, LAI C C. Designs for broadband  microstrip vertical transitions using cavity couplers [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 464-472. 

[4] POZAR D M. Analysis and design of cavity-coupled  microstrip couplers and transitions [J]. IEEE Transactions  on Microwave Theory and Techniques, 2003, 51(3): 1034-1044. 

[5] CHEN C, TSAI M J, ALEXOPOULOS N G. Optimization  of aperture transitions for multi-port microstrip  circuits [C]//1996 IEEE MTT-S International Microwave Symposium Digest. San Francisco: IEEE, 1996: 711-714. 

[6] ZHU L,WU K. Ultrabroad-band vertical transition for  multilayer integrated circuits [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(11): 453-455. 

[7] ABBOSH A M. Vertical microstrip-microstrip transition  for ultra wideband applications [C]//2007 Asia- Pacific Microwave Conference. Bangkok: IEEE, 2007: 1-4. 

[8] TAOZW, SUNJ F, HUANGM, et al. Design of wideband  slot-coupled microstrip vertical transition [J]. International Journal of RF and Microwave Computer- Aided Engineering, 2020, 30(4): e22118. 

[9] YANG L, ZHU L, CHOI W W, et al. Compact wideband  microstrip-to-microstrip vertical transition with  extended upper stopband [J]. International Journal  of RF and Microwave Computer-Aided Engineering, 2018, 28(4): e21228. 

[10] HU K Y, JIANG Y, FENG L P, et al. A wideband  filtering microstrip-to-microstrip vialess vertical transition  on CPW MMR [J]. International Journal of RF  and Microwave Computer-Aided Engineering, 2021, 31(4): e22567. 

[11] ZHANG Y F, SHI S Y, MARTIN R D, et al. Ultrawideband  vialess microstrip line-to-stripline transition  in multilayer LCP substrate for E- and W-band applications [J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12): 1101-1103. 

[12] SERCU J, FACHE N, LIBBRECHT F, et al. Mixed potential integral equation technique for hybrid  microstrip-slotline multilayered circuits using a mixed  rectangular-triangular mesh [J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(5): 1162- 1172. 

[13] HUANG X B, WU K L. A broadband and vialess  vertical microstrip-to-microstrip transition [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 938-944. 

[14] ZHU L, SUN S, MENZEL W. Ultra-wideband (UWB)  bandpass filters using multiple-mode resonator [J]. IEEE Microwave and Wireless Components Letters, 2005, 15(11): 796-798. 

[15] GUO X, ZHU L, WANG J P, et al. Wideband  microstrip-to-microstrip vertical transitions via multiresonant  modes in a slotline resonator [J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1902-1909. 

[16] YANG L, ZHU L, CHOI W W, et al. Analysis and design  of wideband microstrip-to-microstrip equal ripple  vertical transitions and their application to bandpass  filters [J]. IEEE Transactions on Microwave Theory  and Techniques, 2017, 65(8): 2866-2877.

Outlines

/