Journal of Shanghai Jiaotong University(Science) >
A Generalized Two-Level Bregman Method with Dictionary Updating for Non-Convex Magnetic Resonance Imaging Reconstruction
Received date: 2013-10-24
Online published: 2020-10-09
Supported by
The National Natural Science Foundation of China (Nos 61362001, 61365013 and 51165033);The Natural Science Foundation of Jiangxi Province (Nos 20132BAB211030 and 20122BAB211015);The Technology Foundation of Department of Education in Jiangxi Province (Nos GJJ 13061 and GJJ 14196);The National Postdoctoral Research Funds (No 2014M551867);The Jiangxi Advanced Projects for Postdoctoral Research Funds (No 2014KY02)
In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex
Key words: laterally loaded piles; $m$-method; hydraulic head; land deformation; pumping-recovery; circular excavation; back analysis; horizontal displacement; outage performance; amplify-and-forward (AF); heterogeneous circumstance; magnetic resonance imaging (MRI); sparse representation; non-convex; generalized thresholding; dictionary updating; beamforming; channel state information (CSI); power control; cognitive radio; monotone optimization; price; Stackelberg game; fairness; supply chain coordination; alternating direction method; two-level Bregman method with dictionary updating (TBMDU); admission control scheme; heterogeneity; substitution; service parts; last stock; handover service; high-speed train communication; S-clay1 model; undrained compression test; functionally graded materials; cylindrical sandwich panel; low-velocity water entry; cylinder structure; rectangular sandwich plate; simply supported; free vibration; resting-state brain function network; supercavitating; ventilated; dynamic mesh; pitching; wall effect; model network; connection distance minimization; topological property; anatomical distance; common neighbor; underwater glider; nonlinear control; adaptive backstepping; Lyapunov function; cylinder radius; initial velocity; entry angle; soft soil; strain-dependent modulus; video capsule endoscopy (VCE); frame rate; working hours; in vivo experiment
Ming-hui ZHANG, Xiao-yang HE, Shen-yuan DU, Qie-gen* LIU . A Generalized Two-Level Bregman Method with Dictionary Updating for Non-Convex Magnetic Resonance Imaging Reconstruction[J]. Journal of Shanghai Jiaotong University(Science), 2015 , 20(6) : 660 -669 . DOI: 10.1007/s12204-015-1674-z
[1] | Lustig M, Donoho D, Pauly J M.Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. |
[2] | Lin F H, Kwong K K, Belliveau J W,et al.Parallel imaging reconstruction using automatic regularization[J]. Magnetic Resonance in Medicine, 2004, 51(3): 559-567. |
[3] | Qu P, Luo J, Zhang B,et al.An improved iterative SENSE reconstruction method[J]. Magnetic Resonance Engineering, 2007, 31(1): 44-50. |
[4] | Lin F H, Wang F N, Ahlfors S P,et al.Parallel MRI reconstruction using variance partitioning regularization[J]. Magnetic Resonance in Medicine, 2007, 58(4): 735-744. |
[5] | Liang D, Liu B, Wang J,et al.Accelerating SENSE using compressed sensing[J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584. |
[6] | Candès E J, Romberg J, Tao T.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. |
[7] | Donoho D L.Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. |
[8] | Tropp J A, Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. |
[9] | Block K T, Uecker M, Frahm J.Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086-1098. |
[10] | Ma S, Yin W, Zhang Y,et al.An efficient algorithm for compressed MR imaging using total variation and wavelets [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008: 1-8. |
[11] | Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic $l_0$ minimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106-121. |
[12] | Wong A, Mishra A, Fieguth P,et al. Sparse reconstruction of breast MRI using homotopic $l_0$ minimization in a regional sparsified domain [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3): 743-752. |
[13] | Shi J P, Ren X, Dai G,et al.A non-convex relaxation approach to sparse dictionary learning [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2011: 1809-1816. |
[14] | Akcakaya M, Nam S, Hu P,et al.Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090-1099. |
[15] | Ramani S, Fessler J A.Parallel MR image reconstruction using augmented Lagrangian methods[J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694-706. |
[16] | Aharon M, Elad M, Bruckstein A.K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. |
[17] | Elad M, Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. |
[18] | Otazo R, Sodickson D K.Adaptive compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4867. |
[19] | Bilgin A, Kim Y, Liu F,et al.Dictionary design for compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4887. |
[20] | Chen Y, Ye X, Huang F. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data[J]. Inverse Problems and Imaging, 2010, 4(2): 223-240. |
[21] | Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled $k$-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. |
[22] | Chartrand R.Exact reconstructions of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710. |
[23] | Chartrand R, Yin W.Iteratively reweighted algorithms for compressive sensing [C]// Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, Nevada, USA: IEEE, 2008: 3869-3872. |
[24] | Liu Q, Wang S, Luo J.A novel predual dictionary learning algorithm[J]. Journal of Visual Communication Image Represention, 2012, 23(1): 182-193. |
[25] | Liu Q, Luo J, Wang S,et al.An augmented Lagrangian multi-scale dictionary learning algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2011, 58(1): 1-16. |
[26] | Yin W, Osher S, Goldfarb D,et al. Bregman iterative algorithms for $l_0$-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. |
[27] | Liu Q, Wang S, Yang K,et al.Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290-1301. |
[28] | Daubechies I, Defrise M, Mol C D.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. |
[29] | Voronin S, Chartrand R.A new generalized thresholding algorithm for inverse problems with sparsity constraints [C]// Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 2013. |
/
〈 |
|
〉 |