This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing
composites (SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on
the generalized self-consistent method, a representative volume element (RVE) model is established, and the
cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties
on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase
thickness of 0.3 μm and an interphase elastic modulus of about 502MPa are optimal to restrain the initiation of the
interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,
which agrees well with results by scanning electron microscope (SEM).
ZHANG Bin1,2* (张斌), YU Xiaoming1 (宇晓明), GU Boqin3 (顾伯勤)
. A Generalized Self-Consistent Model for Interfacial Debonding Behavior of Fiber Reinforced Rubber Matrix Sealing Composites[J]. Journal of Shanghai Jiaotong University(Science), 2017
, 22(3)
: 343
-348
.
DOI: 10.1007/s12204-017-1841-5
[1] TIAN M, SU L, CAIW T, et al. Mechanical propertiesand reinforcement mechanisms of hydrogenated acrylonitrilebutadiene rubber composites containing fibrillarsilicate nanofibers and short aramid microfibers[J]. Journal of Applied Polymer Science, 2011, 120(3):1439-1447.
[2] ZHANG B, GU B Q, YU X M. Failure behaviorof resorcinol-formaldehyde latex coated aramid shortfiber-reinforced rubber sealing under transverse tension[J]. Journal of Applied Polymer Science, 2015,132: 41672. DOI: 10.1002/app.41672 (published online).
[3] VAUGHAN T J, MCCARTHY C T. Micromechanicalmodelling of the transverse damage behaviour in fibrereinforced composites [J]. Composites Science andTechnology, 2011, 71(3): 388-396.
[4] HOBBIEBRUNKEN T, HOJO M, ADACHI T, et al.Evaluation of interfacial strength in CF/epoxies usingFEM and in-situ experiments [J]. Composites PartA: Applied Science and Manufacturing, 2006, 37(12):2248-2256.
[5] CANAL L P, GONZ′ALEZ C, SEGURADO J, et al.Intraply fracture of fiber-reinforced composites: Microscopicmechanisms and modeling [J]. CompositesScience and Technology, 2012, 72(11): 1223-1232.
[6] ZHANG Y Y, ZHU S W, LIU Y, et al. The mechanicaland tribological properties of nitric acid-treatedcarbon fiber-reinforced polyoxymethylene composites[J]. Journal of Applied Polymer Science, 2015, 132:41812. DIO: 10.1002/app.41812 (published online).
[7] STARINK M J, SYNGELLAKIS S. Shear lag modelsfor discontinuous composites: Fibre end stresses andweak interface layers [J]. Materials Science and Engineering:A, 1999, 270(2): 270-277.
[8] MORALEDA J, SEGURADO J, LLORCA J. Finitedeformation of incompressible fiber-reinforced elastomers:A computational micromechanics approach[J]. Journal of the Mechanics and Physics of Solids,2009, 57(9): 1596-1613.
[9] LI X, XIA Y, LI Z, et al. Three-dimensional numericalsimulations on the hyperelastic behavior of carbonblackparticle filled rubbers under moderate finite deformation[J]. Computational Materials Science, 2012,55: 157-165.
[10] AFONSO J C, RANALLI G. Elastic properties ofthree-phase composites: Analytical model based onthe modified shear-lag model and the method of cells[J]. Composites Science and Technology, 2005, 65(7):1264-1275.
[11] WANG X Q, ZHAO W T, FANG B, et al. Micromechanicalanalysis of long fiber-reinforced compositeswith nanoparticle incorporation into the interphase region[J]. Journal of Applied Polymer Science, 2015,132: 41573. DOI: 10.1002/app.41573 (published online).
[12] ZHU D S, GU B Q, CHEN Y. Micromechanicalmodel of stress distribution and transfer in short-fiberreinforcedelastomer matrix composite [J]. Journalof Computational and Theoretical Nanoscience,2008,5(8): 1546-1550.
[13] YUAN M N, YANY Y Q, HUANG B, et al. Effect ofinterface reaction on interface shear strength of SiCfiber reinforced titanium matrix composites [J]. RareMetal Materials and Engineering, 2009, 38(8): 1321-1324.
[14] ZHANGWX, LI L X,WANG T J. Interphase effect onthe strengthening behavior of particle-reinforced metalmatrix composites [J]. Computational Materials Science,2007, 41(2): 145-155.
[15] JIANG C P, TONG Z H, CHEUNG Y K. A generalizedself-consistent method for piezoelectric fiber reinforcedcomposites under antiplane shear [J]. Mechanicsof Materials, 2001, 33(5): 295-308.
[16] ZHANG B, GU B Q, YU X M. Prediction methodfor longitudinal tensile-modulus of aramid short-fiberreinforcedrubber sealing composites [J]. Journal ofShanghai Jiao Tong University, 2015, 49(1): 96-100(in Chinese).
[17] HUANG Y, HU K X, CHANDRA A. A generalizedself-consistent mechanics method for microcrackedsolids [J]. Journal of the Mechanics and Physics ofSolids, 1994, 42(8): 1273-1291.
[18] GONZ′ALEZ C, LLORCA J. Mechanical behavior ofunidirectional fiber-reinforced polymers under transversecompression: Microscopic mechanisms and modeling[J]. Composites Science and Technology, 2007,67(13): 2795-2806.
[19] SA R, YAN Y, WEI Z H, et al. Surface modificationof aramid fibers by bio-inspired poly(dopamine) andepoxy functionalized silane grafting [J]. ACS AppliedMaterials and Interfaces, 2014, 6(23): 21730-21738.
[20] JIM′ENEZ F L, PELLEGRINO S. Constitutive modelingof fiber composites with a soft hyperelastic matrix[J]. International Journal of Solids and Structures,2012, 49(3): 635-647.
[21] YUXM, GU B Q, ZHANGB. Effects of short fiber tipgeometry and inhomogeneous interphase on the stressdistribution of rubber matrix sealing composites [J].Journal of Applied Polymer Science, 2015, 132: 41638.DOI: 10.1002/app.41638 (published online).
[22] SHEN L X, LI J. Effective elastic moduli of compositesreinforced by particle or fiber with an inhomogeneousinterphase [J]. International Journal of Solidsand Structures, 2003, 40(6): 1393-1409.
[23] KIRITSI C C, ANIFANTIS N K. Load carrying characteristicsof short fiber composites containing a heterogeneousinterphase region [J]. Computational MaterialsScience, 2001, 20(1): 86-97.
[24] NGABONZIZA Y, LI J, BARRY C F. Electrical conductivityand mechanical properties of multiwalledcarbon nanotube-reinforced polypropylene nanocomposites[J]. Acta Mechanica, 2011, 220(1): 289-298.