A Cryogenic 10-bit Successive Approximation Register Analog-to-Digital Converter Design with Modified Device Model

Expand
  • (1. School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China; 2. College of Physics, Liaoning University, Shenyang 110036, China)

Online published: 2013-12-05

Abstract

A 10-bit 500 kHz low-power successive approximation register (SAR) analog-to-digital converter (ADC) for cryogenic infrared readout circuit is proposed. To improve the simulation accuracy of metal-oxidesemiconductor field-effect transistors (MOSFETs), corresponding modification in device model is presented on the basis of BSIM3v3 with parameter extraction at 77K. Corresponding timing is adopted in comparator to eliminate the influence caused by abnormal performance of MOSFETs at 77 K. The SAR ADC is fabricated and verified by standard 0.35 μm complementary metal oxide semiconductor (CMOS) process. At 77 K, measurement results show that signal to noise and distortion ratio (SNDR) is 54.74 dB and effective number of bits (ENOB) is 8.8 at the sampling rate of 500 kHz. The total circuit consumes 0.6mW at 3.3V power supply.

Cite this article

ZHAO Yi-qiang1* (赵毅强), YANG Ming1 (杨 明), ZHAO Hong-liang2 (赵宏亮) . A Cryogenic 10-bit Successive Approximation Register Analog-to-Digital Converter Design with Modified Device Model[J]. Journal of Shanghai Jiaotong University(Science), 2013 , 18(5) : 520 -525 . DOI: 10.1007/s12204-013-1436-8

References

[1] Itsuno A M, Philips J D, Velicu S. Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors [J]. IEEE Transactions on Electron Devices, 2011, 58(2): 501-507.
[2] Creten Y, Merken P, Sansen W, et al. A cryogenic ADC operating down to 4.2K [C]//Proceedings of 2007 IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2007: 468-459, 616.
[3] Okcan B, Merken P, Gielen G, et al. A cryogenic analog to digital converter operating from 300K down to 4.4K [J]. Review of Scientific Instruments, 2010, 81(2): 1-6.
[4] Mazure C, Gunderson C, Roman B. Impact of LDD spacer reduction on MOSFET performance for sub-μm gate/space pitches [C]//Proceedings of IEEE International Electron Devices Meeting. San Francisco: IEEE, 1992: 893-896.
[5] Huang C L, Gildenblat G S. Measurements and modeling of the n-channel MOSFET inversion layer mobility and device characteristics in the temperature range 60—300K [J]. IEEE Transactions on Electron Devices, 1990, 37(5): 1289-1300.
[6] Abebe H, Tyree V, Cockerham N S. SPICEBSIM3 model parameters extraction and optimization for low temperature application [C]//Proceedings of 2009 NSTI Nanotechnology Conference and Expo. Houston: Nano Science and Technology Institute, 2009: 647-650.
[7] Martin P, Guellec F. MOSFET modeling for simulation, design and optimization of infrared CMOS image sensors working at cryogenic temperature [C]//Proceedings of 18th International Conference “Mixed Design of Integrated Circuits & Systems”. Gliwice: IEEE, 2011: 103-106.
[8] Zhao H L, Zhao Y Q, Zhang Z S. A cryogenic SAR ADC for infrared readout circuits [J]. Journal of Semiconductors, 2011, 32(11): 1-5.
[9] Guo W, Mirabbasi S. A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated splitcapacitor DAC [C]//Proceedings of 2012 IEEE International Symposium on Circuits and Systems. Seoul: IEEE, 2012: 1275-1278.
[10] Verma N, Chandrakasan A P. An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes [J]. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1196-1205.
[11] Creten Y, Merken P, Mertens R, et al. An 8-bit flash analog-to-digital converter in standard CMOS technology functional in ultra wide temperature range from 4.2K to 300K [C]//Proceedings of 34th European Solid-State Circuits Conference. Edinburgh: IEEE, 2008: 274-277.
Options
Outlines

/