[1] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn:
Machine learning in python [J]. Journal of Machine Learning Research, 2011, 12:
2825-2830.
[2] LAKSHMINARAYAN K, HARP S A, SAMAD T. Imputation of missing data in
industrial databases [J]. Applied Intelligence, 1999, 11(3): 259-275.
[3] HATHAWAY R J, BEZDEK J C. Fuzzy c-means clustering of incomplete data [J].
IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2001,
31(5): 735-744.
[4] PELCKMANS K, DE BRABANTER J, SUYKENS J A K, et al. Handling missing values
in support vector machine classifiers [J]. Neural Networks, 2005, 18(5/6):
684-692.
[5] RAHMAN M G, ISLAM M Z. Missing value imputation using decision trees and
decision forests by splitting and merging records: Two novel techniques [J].
Knowledge-Based Systems, 2013, 53: 51-65.
[6] LIU Z G, PAN Q, DEZERT J, et al. Adaptive imputation of missing values for
incomplete pattern classification [J]. Pattern Recognition, 2016, 52: 85-95.
[7] LAI X C, WU X, ZHANG L Y, et al. Imputations of missing values using a
tracking-removed autoencoder trained with incomplete data [J]. Neurocomputing,
2019, 366: 54-65.
[8] ADWAN S, AROF H. On improving dynamic time warping for pattern matching
[J]. Measurement, 2012, 45(6): 1609-1620.
[9] BIAN W T, CUI G, WANG X. A trajectory collaboration based map matching
approach for low-samplingrate GPS trajectories [J]. Sensors, 2020, 20(7): 2057.
[10] NIE H, HAN X P, HE B, et al. Deep sequenceto- sequence entity matching for
heterogeneous entity resolution [C]//Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. Beijing: ACM, 2019: 629–638.
[11] LI X, ZHANG W, MA H, et al. Data alignments in machinery remaining useful
life prediction using deep adversarial neural networks [J]. Knowledge-Based
Systems, 2020, 197: 105843.
[12] ZENG K S, LI C J, HOU L, et al. A comprehensive survey of entity alignment
for knowledge graphs [J]. AI Open, 2021, 2: 1-13.
[13] FU T C. A review on time series data mining [J]. Engineering Applications
of Artificial Intelligence, 2011, 24(1): 164-181.
[14] ESLING P, AGON C. Time-series data mining [J]. ACM Computing Surveys,
2012, 45(1): 1-34.
[15] YAN J H, MENG Y, LU L, et al. Industrial big data in an industry 4.0
environment: Challenges, schemes, and applications for predictive maintenance
[J]. IEEE Access, 2017, 5: 23484-23491.
[16] TAO F, QI Q L, LIU A, et al. Data-driven smart manufacturing [J]. Journal
of Manufacturing Systems, 2018, 48: 157-169.
[17] QI Q L, TAO F. Digital twin and big data towards smart manufacturing and
industry 4.0: 360 degree comparison [J]. IEEE Access, 2018, 6: 3585-3593.
[18] ZHANG Z, TAVENARD R, BAILLY A, et al. Dynamic time warping under limited
warping path length [J]. Information Sciences, 2017, 393: 91-107.
[19] KEOGH E J, PAZZANI M J. Derivative dynamic time warping [C]//2001 SIAM
International Conference on Data Mining. Philadelphia: SIAM, 2001: 1-11.
[20] BISHOP C. Neural networks for pattern recognition [M]. New York: Oxford
University Press, 1995.
[21] BISHOP C M. Pattern recognition and machine learning
(information science and statistics) [M]. Berlin, Heidelberg: Springer, 2006:
179-224.
[22] SILVA-RAM′IREZ E L, PINO-MEJ′IAS R, L′OPEZCOELLO M, et al. Missing value
imputation on missing completely at random data using multilayer perceptrons
[J]. Neural Networks, 2011, 24(1): 121-129.
[23] CHEN B H, DENG W H, DU J P. Noisy softmax: improving the generalization
ability of DCNN via postponing the early softmax saturation [C]//2017 IEEE
Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:
4021-4030.
|