[1] MALLA S, DARIUSH B, CHOI C. TITAN: future forecast using action priors [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 11183-11193.
[2] ZHANG T L, TU H Z, QIU W. Developing highprecision maps for automated driving in China: Legal obstacles and the way to overcome them [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 658-669.
[3] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset [J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[4] SONG X B, WANG P, ZHOU D F, et al. Apollo-Car3D: A large 3D car instance understanding benchmark for autonomous driving [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5447-5457.
[5] HU Y K, WANG C X, YANG M. Decision-making method of intelligent vehicles: A survey [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1035-1048 (in Chinese).
[6] SHI Q, ZHANG J L, YANG M. Curvature adaptive control based path following for automatic driving vehicles in private area [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 690-698.
[7] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6261-6270.
[8] RASOULI A, KOTSERUBA I, TSOTSOS J K. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior [C]//2017 IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 206-213.
[9] PELLEGRINI S, ESS A, SCHINDLER K, et al. You’ll never walk alone: Modeling social behavior for multitarget tracking [C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 261-268.
[10] LEAL-TAIX′E L, FENZI M, KUZNETSOVA A, et al. Learning an image-based motion context for multiple people tracking [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014: 3542-3549.
[11] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 961-971.
[12] LIANG J W, JIANG L, NIEBLES J C, et al. Peeking into the future: Predicting future person activities and locations in videos [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5718-5727.
[13] SIVARAMAN S, TRIVEDI M M. Dynamic probabilistic drivability maps for lane change and merge driver assistance [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2063-2073.
[14] LI N, YAO Y, KOLMANOVSKY I, et al. Gametheoretic modeling of multi-vehicle interactions at uncontrolled intersections [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1428-1442.
[15] YAO Y, ATKINS E, JOHNSON-ROBERSON M, et al. BiTraP: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1463-1470.
[16] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723.
[17] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: Endpoint conditioned trajectory prediction [M]//Computer Vision – ECCV 2020. Cham: Springer, 2020: 759-776.
[18] REHDER E, KLOEDEN H. Goal-directed pedestrian prediction [C]//2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 139-147.
[19] RHINEHART N, MCALLISTER R, KITANI K, et al. PRECOG: Prediction conditioned on goals in visual multi-agent settings [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2821-2830.
[20] HOCHREITER S, SCHMIDHUBER J. Long shortterm memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[21] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 2255-2264.
[22] KOSARAJU V, SADEGHIAN A, MART′IN-MART′IN R, et al. Social-BiGAT: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks [C]//Advances in Neural Information Processing Systems. Vancouver, BC: Neural Information Processing Systems Foundation, 2019: 137-146.
[23] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]//Advancesin Neural Information Processing Systems. Montreal: Neural Information Processing Systems Foundation,
2014: 2672-2680.
[24] SHAFIEE N, PADIR T, ELHAMIFAR E. Introvert: Human trajectory prediction via conditional 3D attention [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 16810-16820.
[25] DU L, DING X, LIU T, et al. Modeling event background for if-then commonsense reasoning using context-aware variational autoencoder [C]//2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 2682-2691.
[26] ZHAO T C, ZHAO R, ESKENAZI M. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders [C]//55th Annual Meeting of the Association for Computational Linguistics. Vancouver: Association for Computational Linguistics, 2017: 654-664.
[27] SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models [C]//Advances in Neural Information Processing Systems. Montr′eal: Neural Information Processing Systems Foundation, 2015: 3483-3491.
[28] REYNOLDS D. Gaussian mixture models [M]//Encyclopedia of biometrics. Boston, MA: Springer, 2009: 659-663.
[29] QUAN R J, ZHU L C, WU Y, et al. Holistic LSTM for pedestrian trajectory prediction [J]. IEEE Transactions on Image Processing, 2021, 30: 3229-3239.
[30] NEUMANN L, VEDALDI A. Pedestrian and egovehicle trajectory prediction from monocular camera [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE,
2021: 10199-10207.
[31] RHINEHART N, KITANI K M, VERNAZA P. R2P2: A reparameterized pushforward policy for diverse, precise generative path forecasting [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 794-811.
[32] LI J C, MA H B, TOMIZUKA M. Conditional generative neural system for probabilistic trajectory prediction [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2019: 6150-6156.
[33] CHOI C, MALLA S, PATIL A, et al. DROGON: A causal reasoning framework for future trajectory forecast [EB/OL]. (2020-11-06) [2022-04-19]. https://arxiv.org/abs/1908.00024.
[34] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on gridbased plans [EB/OL]. (2021-04-29) [2022-04-19]. https://arxiv.org/abs/2001.00735.
[35] FANG Z J, L′OPEZ A M. Is the pedestrian going to cross? Answering by 2D pose estimation [C]//2018 IEEE Intelligent Vehicles Symposium. Changshu: IEEE, 2018: 1271-1276.
[36] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 1302-1310.
|