Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (10): 1378-1388.doi: 10.16183/j.cnki.jsjtu.2022.242
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
ZHANG Sujun1, YANG Wenqiang1, GU Xingsheng2()
Received:
2022-06-27
Revised:
2022-07-24
Accepted:
2022-07-27
Online:
2023-10-28
Published:
2023-10-31
Contact:
GU Xingsheng
E-mail:xsgu@ecust.edu.cn.
CLC Number:
ZHANG Sujun, YANG Wenqiang, GU Xingsheng. An Improved Multi-Swarm Migrating Birds Optimization Algorithm for Hybrid Flow Shop Scheduling[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1378-1388.
Tab.2
Orthogonal parameter L16(45) and results
序号 | Np | G | alimit | d | tmax | 平均值 |
---|---|---|---|---|---|---|
1 | 11(1) | 2(1) | 20(1) | 3(1) | 300(1) | 3929.29 |
2 | 11(1) | 3(2) | 30(2) | 4(2) | 400(2) | 3909.13 |
3 | 11(1) | 4(3) | 40(3) | 5(3) | 500(3) | 3926.50 |
4 | 11(1) | 5(4) | 50(4) | 6(4) | 600(4) | 3911.50 |
5 | 13(2) | 2(1) | 30(2) | 5(3) | 600(4) | 3915.21 |
6 | 13(2) | 3(2) | 20(1) | 6(4) | 500(3) | 3901.25 |
7 | 13(2) | 4(3) | 50(4) | 3(1) | 400(2) | 3938.75 |
8 | 13(2) | 5(4) | 40(3) | 4(2) | 300(1) | 3925.88 |
9 | 15(3) | 2(1) | 40(3) | 6(4) | 400(2) | 3928.04 |
10 | 15(3) | 3(2) | 50(4) | 5(3) | 300(1) | 3912.08 |
11 | 15(3) | 4(3) | 20(1) | 4(2) | 600(4) | 3892.96 |
12 | 15(3) | 5(4) | 30(2) | 3(1) | 500(3) | 3915.92 |
13 | 17(4) | 2(1) | 50(4) | 4(2) | 500(3) | 3928.29 |
14 | 17(4) | 3(2) | 40(3) | 3(1) | 600(4) | 3920.92 |
15 | 17(4) | 4(3) | 30(2) | 6(4) | 300(1) | 3914.88 |
16 | 17(4) | 5(4) | 20(1) | 5(3) | 400(2) | 3891.58 |
Tab.5
Comparsion of IMMBO/IMBO/DABC/ILSMRLS algorithms in cases P13 and P3
算法 | P13 | P3 | |||||||
---|---|---|---|---|---|---|---|---|---|
SSD10_ P13_50 | SSD50_ P13_50 | SSD100_ P13_50 | SSD125_ P13_50 | SSD10_ P3_50 | SSD50_ P3_50 | SSD100_ P3_50 | SSD125_ P3_50 | ||
ILSMRLS | 2860.13 | 3887.24 | 5058.04 | 5605.45 | 1163.29 | 1616.35 | 2125.87 | 2389.60 | |
IMBO | 2891.37 | 3882.24 | 5094.32 | 5646.12 | 1178.13 | 1611.34 | 2124.73 | 2390.25 | |
DABC | 2857.31 | 3981.69 | 5082.48 | 5627.08 | 1173.28 | 1607.95 | 2113.76 | 2354.56 | |
IMMBO | 2834.60 | 3856.52 | 5000.99 | 5526.81 | 1110.60 | 1498.79 | 1955.79 | 2170.61 |
Tab.6
Comparison of running time of 4 algorithms when testing 8 adaptive benchmarkss
算例 | 算法 | P3 | |||
---|---|---|---|---|---|
SSD10_P3_50 | SSD50_P3_50 | SSD100_P3_50 | SSD125_P3_50 | ||
Ta32 | ILSMRLS | 2033.51 | 1995.49 | 2015.03 | 1920.50 |
IMBO | 1093.25 | 1099.30 | 1097.90 | 1099.67 | |
DABC | 108.93 | 108.25 | 108.34 | 108.14 | |
IMMBO | 3173.05 | 3134.05 | 3148.59 | 3132.99 | |
Ta34 | ILSMRLS | 2102.98 | 1911.52 | 2009.56 | 2056.72 |
IMBO | 1086.26 | 1097.10 | 1095.33 | 1089.54 | |
DABC | 109.96 | 107.98 | 108.21 | 107.21 | |
IMMBO | 3160.43 | 3143.98 | 3147.07 | 3129.43 |
[1] |
ZANDIEH M, FATEMI GHOMI S M T, MOATTAR HUSSEINI S M. An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times[J]. Applied Mathematics and Computation, 2006, 180(1): 111-127.
doi: 10.1016/j.amc.2005.11.136 URL |
[2] |
李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23): 2798-2813.
doi: 10.3969/j.issn.1004-132X.2020.23.004 |
LI Yingli, LI Xinyu, GAO Liang. Review on hybrid flow shop scheduling problems[J]. China Mechanical Engineering, 2020, 31(23): 2798-2813.
doi: 10.3969/j.issn.1004-132X.2020.23.004 |
|
[3] |
SIOUD A, GAGNÉ C. Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times[J]. European Journal of Operational Research, 2018, 264(1): 66-73.
doi: 10.1016/j.ejor.2017.06.027 URL |
[4] | 李俊青, 李文涵, 陶昕瑞, 等. 时间约束混合流水车间调度问题综述[J]. 控制理论与应用, 2020, 37(11): 2273-2290. |
LI Junqing, LI Wenhan, TAO Xinrui, et al. A survey on time constrained hybrid flow shop scheduling problems[J]. Control Theory & Applications, 2020, 37(11): 2273-2290. | |
[5] |
NADERI B, ZANDIEH M, ROSHANAEI V. Scheduling hybrid flowshops with sequence dependent setup times to minimize makespan and maximum tardiness[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(11/12): 1186-1198.
doi: 10.1007/s00170-008-1569-3 URL |
[6] |
MOCCELLIN J V, NAGANO M S, PITOMBEIRA NETO A R, et al. Heuristic algorithms for scheduling hybrid flow shops with machine blocking and setup times[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(2): 1-11.
doi: 10.1007/s40430-017-0921-7 URL |
[7] |
BURCIN OZSOYDAN F, SAĞIR M. Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: A case study at a manufacturing plant[J]. Computers & Operations Research, 2021, 125: 105044.
doi: 10.1016/j.cor.2020.105044 URL |
[8] | 周炳海, 刘文龙. 考虑能耗和准时的混合流水线多目标调度[J]. 上海交通大学学报, 2019, 53(7): 773-779. |
ZHOU Binghai, LIU Wenlong. Multi-objective hybrid flow-shop scheduling problem considering energy consumption and on-time delivery[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 773-779. | |
[9] |
GÓMEZ-GASQUET P, ANDRÉS C, LARIO F C. An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan[J]. Expert Systems With Applications, 2012, 39(9): 8095-8107.
doi: 10.1016/j.eswa.2012.01.158 URL |
[10] |
PAN Q K, GAO L, LI X Y, et al. Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times[J]. Applied Mathematics and Computation, 2017, 303: 89-112.
doi: 10.1016/j.amc.2017.01.004 URL |
[11] | TIAN H X, LI K, LIU W. A Pareto-based adaptive variable neighborhood search for biobjective hybrid flow shop scheduling problem with sequence-dependent setup time[J]. Mathematical Problems in Engineering, 2016, 2016: 1257060. |
[12] |
KHARE A, AGRAWAL S. Scheduling hybrid flowshop with sequence-dependent setup times and due windows to minimize total weighted earliness and tardiness[J]. Computers & Industrial Engineering, 2019, 135: 780-792.
doi: 10.1016/j.cie.2019.06.057 URL |
[13] |
DUMAN E, UVSAL M, ALKAVA A F. Migrating birds optimization: a new metaheuristic approach and its performance on quadratic assignment problem[J]. Information Sciences, 2012, 217(24): 65-77.
doi: 10.1016/j.ins.2012.06.032 URL |
[14] |
PAN Q K, DONG Y. An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation[J]. Information Sciences, 2014, 277: 643-655.
doi: 10.1016/j.ins.2014.02.152 URL |
[15] |
HAN D Y, TANG Q H, ZHANG Z K, et al. An improved migrating birds optimization algorithm for a hybrid flow shop scheduling within steel plants[J]. Mathematics, 2020, 8(10): 1661.
doi: 10.3390/math8101661 URL |
[16] |
MENG T, PAN Q K, LI J Q, et al. An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem[J]. Swarm and Evolutionary Computation, 2018, 38: 64-78.
doi: 10.1016/j.swevo.2017.06.003 URL |
[17] | 汤洪涛, 王丹南, 邵益平, 等. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213. |
TANG Hongtao, WANG Dannan, SHAO Yiping, et al. A modified migrating birds optimization for multi-objective lot streaming hybrid flowshop scheduling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 201-213. | |
[18] |
BÁEZ S, ANGEL-BELLO F, ALVAREZ A, et al. A hybrid metaheuristic algorithm for a parallel machine scheduling problem with dependent setup times[J]. Computers & Industrial Engineering, 2019, 131: 295-305.
doi: 10.1016/j.cie.2019.03.051 URL |
[19] |
HAN Y X, GU X S. Improved multipopulation discrete differential evolution algorithm for the scheduling of multipurpose batch plants[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5530-5547.
doi: 10.1021/acs.iecr.0c06041 URL |
[20] |
GAO L, PAN Q K. A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem[J]. Information Sciences, 2016, 372: 655-676.
doi: 10.1016/j.ins.2016.08.046 URL |
[21] |
TONGUR V, ÜLKER E. PSO-based improved multi-flocks migrating birds optimization (IMFMBO) algorithm for solution of discrete problems[J]. Soft Computing, 2019, 23(14): 5469-5484.
doi: 10.1007/s00500-018-3199-5 |
[22] |
RUIZ R, STÜTZLE T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[J]. European Journal of Operational Research, 2007, 177(3): 2033-2049.
doi: 10.1016/j.ejor.2005.12.009 URL |
[23] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
doi: 10.1016/j.advengsoft.2016.01.008 URL |
[24] | VALLADA E, RUIZ R, MAROTO C. Synthetic and real benchmarks for complex flow-shops problems[R]. Valencia, Spain:Universitat Politécnica de València, 2003. |
[1] | ZHAO Rui, GU Xingsheng. A Discrete Sine Optimization Algorithm for No-Idle Flow-Shop Scheduling Problem [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1291-1299. |
[2] | HU Kai-Lin, LI Ping. The Optimized Scheduling for IronMaking Bulk Ore Blending Process Based on Improved Ant Colony Optimization [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1105-112. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||