Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (10): 1367-1377.doi: 10.16183/j.cnki.jsjtu.2022.155
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
Previous Articles Next Articles
WANG Yuehan1, NAN Xiaohong1, OUYANG Hongsheng2, GUO Zhikai2, HU Bin3(), WANG Ruzhu3
Received:
2022-05-10
Revised:
2022-06-06
Accepted:
2022-06-17
Online:
2023-10-28
Published:
2023-10-31
Contact:
HU Bin
E-mail:hb1223@sjtu.edu.cn
CLC Number:
WANG Yuehan, NAN Xiaohong, OUYANG Hongsheng, GUO Zhikai, HU Bin, WANG Ruzhu. Matching Characteristics of Expansion Valve Opening and Flow Rate of High Temperature Heat Pump with Green Refrigerant HP-1[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1367-1377.
[1] | 柴麒敏. 中国新达峰目标与碳中和愿景的政策展望[J]. 世界环境, 2021(1): 20-22. |
CHAI Qimin. Policy outlook on China’s new goal of peaking carbon dioxide emissions and vision of carbon neutrality[J]. World Environment, 2021(1): 20-22. | |
[2] | IEA. Word energy outlook 2019[M]. Paris, France: International Energy Agency, 2019. |
[3] |
COOPER S J G, HAMMOND G P, HEWITT N, et al. Energy saving potential of high temperature heat pumps in the UK Food and Drink sector[J]. Energy Procedia, 2019, 161(2): 142-149.
doi: 10.1016/j.egypro.2019.02.073 URL |
[4] |
KOSMADAKIS G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries[J]. Applied Thermal Engineering, 2019, 156(25): 287-298.
doi: 10.1016/j.applthermaleng.2019.04.082 URL |
[5] |
ARPAGAUS C, FREDERIC B, UHLMANN M, et al. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials[J]. Energy, 2018, 152(3): 985-1010.
doi: 10.1016/j.energy.2018.03.166 URL |
[6] |
沈九兵, 郭霆, 武晓昆, 等. 单级/复叠双制式热泵干燥系统设计与试验研究[J]. 机械工程学报, 2018, 54(10): 218-224.
doi: 10.3901/JME.2018.10.218 |
SHEN Jiubing, GUO Ting, WU Xiaokun, et al. Design and experimental study of a heat pump dryer with dual models of single stage and cascade cycles[J]. Journal of Mechanical Engineering, 2018, 54(10): 218-224.
doi: 10.3901/JME.2018.10.218 |
|
[7] | 杨梦, 张华, 孟照峰, 等. 新型环保高温工质HFO-1336 mzz(Z)的研究进展[J]. 制冷学报, 2019, 40(6): 46-52. |
YANG Meng, ZHANG Hua, MENG Zhaofeng, et al. Research progress of the new environmentally friendly high temperature refrigerant HFO-1336 mzz(Z)[J]. Journal of Refrigeration, 2019, 40(6): 46-52. | |
[8] |
ABAS N, KALAIR A R, KHAN N, et al. Natural and synthetic refrigerants, global warming: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 90(3): 557-569.
doi: 10.1016/j.rser.2018.03.099 URL |
[9] | MATEU R C, NAVARRO E J, MOTA B A, et al. Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336 mzz(Z)[J]. Applied Thermal Engineering, 2019, 152(2): 762-777. |
[10] |
MATEU R C, MOTA B A, NAVARRO E J. Comparative analysis of HFO-1234ze(E) and R-515B as low GWP alternatives to HFC-134a in moderately high temperature heat pumps[J]. International Journal of Refrigeration, 2021, 124(4): 197-206.
doi: 10.1016/j.ijrefrig.2020.12.023 URL |
[11] |
KONDOU C, KOYAMA S. Thermodynamic assessment of high-temperature heat pumps using low-GWP HFO refrigerants for heat recovery[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 53(5): 126-141.
doi: 10.1016/j.ijrefrig.2014.09.018 URL |
[12] |
LONGO G A, MANCIN S, RIGHETTI G, et al.Assessment of the low-GWP refrigerants R600a HFO-1234ze(Z) and HFO-1233zd(E) for heat pump and organic Rankine cycle applications[J]. Applied Thermal Engineering, 2020, 167(25): 114804.
doi: 10.1016/j.applthermaleng.2019.114804 URL |
[13] | KONTOMARIS K, KONSTANTINOS M.Use of E-1, 1, 1, 4, 4, 4-hexafluoro-2-butene in heat pumps: AU2013296453[P]. 2015-01-29[2022-05-10]. |
[14] |
ORKIN V L, MARTYNOVA L E, KURYLO M J. Photochemical Properties of trans-1-chloro-3, 3, 3-trifluoropropene (trans-CHCl=CHCF3): OH Reaction Rate Constant, UV and IR Absorption Spectra, GWP and ODP[J]. The Journal of Physical Chemistry A, 2014, 118(28): 5263-5271.
doi: 10.1021/jp5018949 URL |
[15] | 张于峰, 孔令腾, 于晓慧, 等. 一种高温热泵制冷剂的理论和实验研究[J]. 天津大学学报, 2016, 49(3): 314-319. |
ZHANG Yufeng, KONG Lingteng, YU Xiaohui. et al. Theoretical and experimental study on a high temperature heat pump refrigerant[J]. Journal of Tianjin University, 2016, 49(3): 314-319. | |
[16] |
ZHANG Y, ZHANG Y, YU X. et al. Analysis of a high temperature heat pump using BY-5 as refrigerant[J]. Applied Thermal Engineering, 2017, 127(25): 1461-1468.
doi: 10.1016/j.applthermaleng.2017.08.072 URL |
[17] | 欧阳洪生, 郭智恺, 张琦炎, 等. 一种组合物及其应用: CN201910158918.1[P]. 2020-07-07[2022-05-10]. |
OUYANG Hongsheng, GUO Zhikai, ZHANG Qi-yan, et al. A composition and its application: CN201910158918.1[P]. 2020-07-07[2022-05-10]. | |
[18] | 胡鹏荣, 陶乐仁, 何俊, 等. 电子膨胀阀开度对R32水源热泵系统性能的影响[J]. 制冷学报, 2020, 41(3): 111-116. |
HU Pengrong, TAO Leren, HE Jun, et al. Influence of the degree of opening of electronic expansion valve on performance of R32 water source heat pump system[J]. Journal of Refrigeration, 2020, 41(3): 111-116. | |
[19] | 虞中旸, 陶乐仁, 袁朝阳, 等. 电子膨胀阀调节对空气源热泵热水器性能的影响[J]. 制冷学报, 2017, 38(5): 65-70. |
YU Zhongyang, TAO Leren, YUAN Chaoyang, et al. Effects of control for electronic expansion valve on performance of air-source heat-pump water heater[J]. Journal of Refrigeration, 2017, 38(5): 65-70. | |
[20] |
APREA C, MASTRULLO R. Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C[J]. Applied Thermal Engineering, 2002, 22(2): 205-218.
doi: 10.1016/S1359-4311(01)00071-0 URL |
[21] |
PARK C, CHO H, LEE Y, et al. Mass flow characteristics and empirical modeling of R22 and R410A flowing through electronic expansion valve[J]. International Journal of Refrigeration, 2007, 30(8): 1401-1407.
doi: 10.1016/j.ijrefrig.2007.03.011 URL |
[22] |
CAO X, LI Z, SHAO L, et al. Refrigerant flow through electronic expansion valve: Experimental and neural network modeling[J]. Applied Thermal Engineering, 2016, 92(9): 210-218.
doi: 10.1016/j.applthermaleng.2015.09.062 URL |
[23] |
CHEN T, CHA D A, KWON O K, et al. Experimental investigation on mass flow characteristics of R245fa through electronic expansion valve[J]. Applied Thermal Engineering, 2017, 125(6): 111-117.
doi: 10.1016/j.applthermaleng.2017.06.127 URL |
[24] |
LIU C, HOU Y, MA J, et al. Experimental study on the CO2 flow characteristics through electronic expansion valves in heat pump[J]. International Journal of Refrigeration, 2016, 69(5): 106-113.
doi: 10.1016/j.ijrefrig.2016.05.005 URL |
[25] |
MATEU R C, NAVARRO E J, MOTA B A, et al. Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery[J]. International Journal of Refrigeration, 2018, 90(6): 229-237.
doi: 10.1016/j.ijrefrig.2018.04.017 URL |
[26] |
HU B, WU D, WANG L, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502.
doi: 10.1007/s11708-017-0510-6 |
[27] |
MATEU R C, ARPAGAUS C, MOTA B A. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: A comprehensive study[J]. Energy Conversion and Management, 2021, 229(5): 113752.
doi: 10.1016/j.enconman.2020.113752 URL |
[28] |
WU D, HU B, WANG R. Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants[J]. Renewable Energy, 2018, 116(10): 775-785.
doi: 10.1016/j.renene.2017.10.024 URL |
[29] | 张川, 马善伟, 陈江平, 等. 电子膨胀阀制冷剂流量系数经验模型的试验研究[J]. 机械工程学报, 2005, 41(11): 63-69. |
ZHANG Chuan, MA Shanwei, CHEN Jiangping, et al. Experimental research on empirical model of flow coefficient of electronic expansion valve[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 63-69. | |
[30] | 马善伟, 张川, 陈江平, 等. 电子膨胀阀制冷剂流量系数的试验研究[J]. 上海交通大学学报, 2005, 39(2): 247-250. |
MA Shanwei, ZHANG Chuan, CHEN Jiangping, et al. Experimental research on electronic expansion valve refrigerant flow coefficient[J]. Journal of Shanghai Jiao Tong University, 2005, 39(2): 247-250. | |
[31] | 张乐平, 张早校, 郁永章. 电子膨胀阀流量特性及选型的分析[J]. 流体机械, 2000, 28(12): 51-53. |
ZHANG Leping, ZHANG Zaoxiao, YU Yongzhang. The analysis of the flow characteristic and model selection about the electronic expansion valve[J]. Fluid Machinery, 2000, 28(12): 51-53. | |
[32] | 李文清. 电子膨胀阀的性能特性分析[D]. 天津: 天津商业大学, 2020. |
LI Wenqing. Performance anlysis of electronic expansion valve[D]. Tianjin: Tianjin University of Commerce, 2020. | |
[33] | 马善伟, 张川, 陈江平, 等. 电子膨胀阀制冷剂质量流量系数的试验研究[J]. 上海交通大学学报, 2006, 40(2): 282-285. |
MA Shanwei, ZHANG Chuan, CHEN Jiangping, et al. Experimental study on electronic expansion valve refrigerant flow coefficient[J]. Journal of Shanghai Jiao Tong University, 2006, 40(2): 282-285. | |
[34] | 段远源, 张重华, 林鸿, 等. 环保制冷剂表面张力的预估方程[J]. 工程热物理学报, 2001, 23(3): 278-280. |
DUAN Yuanyuan, ZHANG Chonghua, LIN Hong, et al. The prediction of surface tension for HFCs and HCFCs[J]. Journal of Engineering Thermophysics, 2001, 23(3): 278-280. | |
[35] |
CHOI J, JIN T C, KIM Y. A generalized correlation for two-phase flow of alternative refrigerants through short tube orifices[J]. International Journal of Refrigeration, 2004, 27(4): 393-400.
doi: 10.1016/j.ijrefrig.2003.11.008 URL |
[1] | MOU Jieganga,WU Zhenxinga,ZHOU Peijiana,GU Yunqinga,WU Denghaob,REN Yunb. Transient Flow Characteristics in Self-Priming Centrifugal Pump Volute MOU Jieganga,WU Zhenxinga,ZHOU Peijiana,GU Yunqinga,WU Denghaob,REN Yunb [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 461-468. |
[2] | GAO Yun1,2,WANG Menghao1,ZONG Zhi3,ZOU Li3,PENG Geng1. Effect of Splitter Plate Length on Hydrodynamic#br# Performance Around Cylinder at High Reynolds Numbers [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 504-. |
[3] | GAO Fei, L Jiangang,ZHANG Zhongzhi,GUO Shaoyan. ThreeDimensional Simulation of the Modular HingeType Wings in Hovering Flight [J]. Journal of Shanghai Jiaotong University, 2017, 51(2): 166-. |
[4] | ZHANG Ping1,GU Bo1,WANG Ting1,ZHAO Pengcheng2,MA Hongtao2. Theoretical Model and Experimental Research on Multiple Micro-channel Parallel Flow Condenser [J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1738-1744. |
[5] | XU Zheng,WANG Dezhong,ZHANG Jige,ZHOU Wenxia(. Analysis for Vibration and Noise Problem of Main Steam Isolation Valve with Pipelines [J]. Journal of Shanghai Jiaotong University, 2010, 44(01): 95-0100. |
[6] | CHEN Liang,CHEN Jiangping,LIU Jinghui,CHEN Zhijiu. A Flow Characteristics Model of Electronic Expansion Valve Considering Choking Characteristics [J]. Journal of Shanghai Jiaotong University, 2010, 44(01): 111-0115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 495
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||