Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (6): 789-798.doi: 10.1007/s12204-019-2123-1
Previous Articles Next Articles
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾)
Online:
2019-12-15
Published:
2019-12-07
Contact:
XU Guobin (徐国宾)
E-mail: xuguob@tju.edu.cn
CLC Number:
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾). Temperature Drop Model Based on Discrete Element Method for Simulating Damage of Bio-Cemented Sand by Cold Wave[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 789-798.
[12] | TANG Y, XU G B, QU C L, et al. Damage simulationof a random aggregate model induced by microwaveunder different discontinuous ratios and exposuretimes [J]. Advances in Materials Science andEngineering, 2016, 2016: 5690272. |
[1] | DHAMI N K, REDDY M S, MUKHERJEE A. Significantindicators for biomineralisation in sand of varyinggrain sizes [J]. Construction and Building Materials,2016, 104: 198-207. |
[13] | HUANG K, XU T, LI G F, et al. The feasibility ofDEM to analyze the temperature field of asphalt mixture[J]. Construction and Building Materials, 2016,106: 592-599. |
[2] | MALEKI M, EBRAHIMI S, ASADZADEH F, et al.Performance of microbial-induced carbonate precipitationon wind erosion control of sandy soil [J]. InternationalJournal of Environmental Science and Technology,2016, 13(3): 937-944. |
[14] | LIU H Y, ROQUETE M, Kou S Q, et al. Characterizationof rock heterogeneity and numerical verification[J]. Engineering Geology, 2004, 72(1): 89-119. |
[3] | LIANG J M, GUO Z Y, DENG L J, et al. Maturefine tailings consolidation through microbial inducedcalcium carbonate precipitation [J]. Canadian Journalof Civil Engineering, 2015, 42(11): 975-978. |
[15] | PAN P Z, XIA T F. Numerical study on coupledthermo-mechanical processes in ¨Asp¨o pillar stabilityexperiment [J]. Journal of Rock Mechanics andGeotechnical Engineering, 2013, 5(2): 136-144. |
[4] | SALIFU E, MACLACHLAN E, IYER K R, et al. Applicationof microbially induced calcite precipitationin erosion mitigation and stabilisation of sandy soilforeshore slopes: A preliminary investigation [J]. EngineeringGeology, 2016, 201(4): 96-105. |
[16] | WALSH S D C, LOMOV I N. Micromechanical modelingof thermal spallation in granitic rock [J]. InternationalJournal of Heat and Mass Transfer, 2013, 65(5):366-373. |
[5] | CANAKCI H, SIDIK W, KILIC I H. Effect of bacterialcalcium carbonate precipitation on compressibilityand shear strength of organic soil [J]. Soils and Foundations,2015, 55(5): 1211-1221. |
[17] | JING L. A review of techniques, advances and outstandingissues in numerical modelling for rock mechanicsand rock engineering [J]. International Journalof Rock Mechanics and Mining Sciences, 2003, 40(3):283-353. |
[6] | UMAR M, KASSIM K A, CHIET K T P. Biologicalprocess of soil improvement in civil engineering: A review[J]. Journal of Rock Mechanics and GeotechnicalEngineering, 2016, 8(5): 767-774. |
[18] | TERREROS I, IORDANOFF I, CHARLES J L. Simulationof continuum heat conduction using DEMdomains [J]. Computational Materials Science, 2013,69(1): 46-52. |
[7] | TANG Y, XU G B, LIAN J J, et al. Effect of temperatureand humidity on the adhesion strength anddamage mechanism of shotcrete-surrounded rock [J].Construction and Building Materials, 2016, 124: 1109-1119. |
[19] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Science, 2008,45(5): 789-799. |
[8] | DUFOUR N, WONG H, ARSON C, et al. A thermodynamicallyconsistent framework for saturated viscoplasticrock-materials subject to damage [J]. MechanicsResearch Communications, 2012, 45: 15-21. |
[20] | HAHN M, SCHWARZ M, KR¨OPLIN B H, et al. Discreteelement method for the thermal field: Proof ofconcept and determination of the material parameters[J]. Computational Materials Science, 2011, 50(10):2771-2784. |
[9] | SHEN B T, KIM H M, PARK E S, et al. Multiregionboundary element analysis for coupled thermalfracturingprocesses in geomaterials [J]. Rock Mechanicsand Rock Engineering, 2013, 46(1): 135-151. |
[21] | VAN LEW J T, YING A, ABDOU M. A discrete elementmethod study on the evolution of thermomechanicsof a pebble bed experiencing pebble failure [J].Fusion Engineering and Design, 2014, 89(7/8): 1151-1157. |
[10] | RINNE M, SHEN B T, BACKERS T. Modelling fracturepropagation and failure in a rock pillar under mechanicaland thermal loadings [J]. Journal of Rock Mechaicsand Geotechnical Engineering, 2013, 5(1): 73-83. |
[22] | PENNEC F, ALZINA A, TESSIER-DOYEN N, etal. A combined finite-discrete element method forcalculating the effective thermal conductivity of bioaggregatesbased materials [J]. International Journalof Heat and Mass Transfer, 2013, 60(1): 274-283. |
[11] | KOYAMA T, CHIJIMATSU M, SHIMIZU H, etal. Numerical modeling for the coupled thermomechanicalprocesses and spalling phenomena in ¨Asp¨opillar stability experiment (APSE) [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(1):58-72. |
[23] | TSORY T, BEN-JACOB N, BROSH T, et al. ThermalDEM-CFD modeling and simulation of heat transferthrough packed bed [J]. Powder Technology, 2013,244(4): 52-60. |
[12] | TANG Y, XU G B, QU C L, et al. Damage simulationof a random aggregate model induced by microwaveunder different discontinuous ratios and exposuretimes [J]. Advances in Materials Science andEngineering, 2016, 2016: 5690272. |
[24] | RICKELT S, SUDBROCK F,WIRTZ S, et al. CoupledDEM/CFD simulation of heat transfer in a genericgrate system agitated by bars [J]. Powder Technology,2013, 249(11): 360-372. |
[13] | HUANG K, XU T, LI G F, et al. The feasibility ofDEM to analyze the temperature field of asphalt mixture[J]. Construction and Building Materials, 2016,106: 592-599. |
[25] | GUI N, YAN J, XU W K, et al. DEM simulation andanalysis of particle mixing and heat conduction in arotating drum [J]. Chemical Engineering Science, 2013,97(7): 225-234. |
[14] | LIU H Y, ROQUETE M, Kou S Q, et al. Characterizationof rock heterogeneity and numerical verification[J]. Engineering Geology, 2004, 72(1): 89-119. |
[26] | KOMOSSA H, WIRTZ S, SCHERER V, et al.Transversal bed motion in rotating drums using sphericalparticles: Comparison of experiments with DEMsimulations [J]. Powder Technology, 2014, 264(3): 96-104. |
[15] | PAN P Z, XIA T F. Numerical study on coupledthermo-mechanical processes in ¨Asp¨o pillar stabilityexperiment [J]. Journal of Rock Mechanics andGeotechnical Engineering, 2013, 5(2): 136-144. |
[27] | GARBOCZI E J, BENTZ D P. Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials, 1998, 8(2): 77-88. |
[16] | WALSH S D C, LOMOV I N. Micromechanical modelingof thermal spallation in granitic rock [J]. InternationalJournal of Heat and Mass Transfer, 2013, 65(5):366-373. |
[28] | XU G B, TANG Y, LIAN J J, et al. Mineralizationprocess of biocemented sand and impact of bacteriaand calcium ions concentrations on crystal morphology[J]. Advances in Materials Science and Engineering,2017, 2017: 5301385. |
[17] | JING L. A review of techniques, advances and outstandingissues in numerical modelling for rock mechanicsand rock engineering [J]. International Journalof Rock Mechanics and Mining Sciences, 2003, 40(3):283-353. |
[29] | TANG Y, LIAN J J, XU G B, et al. Effect of cementationon calcium carbonate precipitation of loose sandresulting from microbial treatment [J]. Transactions ofTianjin University, 2017, 23(6): 547-554. |
[18] | TERREROS I, IORDANOFF I, CHARLES J L. Simulationof continuum heat conduction using DEMdomains [J]. Computational Materials Science, 2013,69(1): 46-52. |
[30] | TANG Y, XU G B, LIAN J J, et al. Research on simulationanalysis method of microbial cemented sandbased on discrete element method [J]. Advances in MaterialsScience and Engineering, 2019, 2019: 7173414. |
[19] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Science, 2008,45(5): 789-799. |
[31] | FENG K, MONTOYA B M, EVANS T M. Discreteelement method simulations of bio-cemented sands [J].Computers and Geotechnics, 2017, 85: 139-150. |
[20] | HAHN M, SCHWARZ M, KR¨OPLIN B H, et al. Discreteelement method for the thermal field: Proof ofconcept and determination of the material parameters[J]. Computational Materials Science, 2011, 50(10):2771-2784. |
[32] | BARDET J P. Observations on the effects of particlerotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(94): 159-182. |
[21] | VAN LEW J T, YING A, ABDOU M. A discrete elementmethod study on the evolution of thermomechanicsof a pebble bed experiencing pebble failure [J].Fusion Engineering and Design, 2014, 89(7/8): 1151-1157. |
[33] | POTYONDY D O, CUNDALL P A. A bonded-particlemodel for rock [J]. International Journal of Rock Mechanicsand Mining Sciences, 2004, 41(8): 1329-1364. |
[22] | PENNEC F, ALZINA A, TESSIER-DOYEN N, etal. A combined finite-discrete element method forcalculating the effective thermal conductivity of bioaggregatesbased materials [J]. International Journalof Heat and Mass Transfer, 2013, 60(1): 274-283. |
[34] | MEISELS R, TOIFL M, HARTLIEB P, et al. Microwavepropagation and absorption and its thermomechanicalconsequences in heterogeneous rocks [J].International Journal of Mineral Processing, 2015,135(3): 40-51. |
[23] | TSORY T, BEN-JACOB N, BROSH T, et al. ThermalDEM-CFD modeling and simulation of heat transferthrough packed bed [J]. Powder Technology, 2013,244(4): 52-60. |
[35] | TANG Y, XU G B, YAN Y, et al. Thermal crackinganalysis of microbial cemented sand under variousstrains based on the DEM [J]. Advances in MaterialsScience and Engineering, 2018, 2018: 7528746. |
[24] | RICKELT S, SUDBROCK F,WIRTZ S, et al. CoupledDEM/CFD simulation of heat transfer in a genericgrate system agitated by bars [J]. Powder Technology,2013, 249(11): 360-372. |
[36] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2008,45(5): 789-799. |
[25] | GUI N, YAN J, XU W K, et al. DEM simulation andanalysis of particle mixing and heat conduction in arotating drum [J]. Chemical Engineering Science, 2013,97(7): 225-234. |
[37] | YUAN M D, XIAO M, YANG G H. Crack state ofChangsha arch dam and analysis on the effects of coldwave [J]. Journal of Hydroelectric Engineering, 2012,31(3): 175-181 (in Chinese). |
[26] | KOMOSSA H, WIRTZ S, SCHERER V, et al.Transversal bed motion in rotating drums using sphericalparticles: Comparison of experiments with DEMsimulations [J]. Powder Technology, 2014, 264(3): 96-104. |
[38] | ZHOU W, LI S R, LIU X H, et al. Simulation of concretespecimens temperature cracks using particle flowcode [J]. Journal of Hydroelectric Engineering, 2013,32(3): 187-193 (in Chinese). |
[27] | GARBOCZI E J, BENTZ D P. Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials, 1998, 8(2): 77-88. |
[39] | WANG Z L, LI Y C, WANG J G. A damage-softeningstatistical constitutive model considering rock residualstrength [J]. Computers & Geosciences, 2007, 33(1):1-9. |
[28] | XU G B, TANG Y, LIAN J J, et al. Mineralizationprocess of biocemented sand and impact of bacteriaand calcium ions concentrations on crystal morphology[J]. Advances in Materials Science and Engineering,2017, 2017: 5301385. |
[29] | TANG Y, LIAN J J, XU G B, et al. Effect of cementationon calcium carbonate precipitation of loose sandresulting from microbial treatment [J]. Transactions ofTianjin University, 2017, 23(6): 547-554. |
[30] | TANG Y, XU G B, LIAN J J, et al. Research on simulationanalysis method of microbial cemented sandbased on discrete element method [J]. Advances in MaterialsScience and Engineering, 2019, 2019: 7173414. |
[31] | FENG K, MONTOYA B M, EVANS T M. Discreteelement method simulations of bio-cemented sands [J].Computers and Geotechnics, 2017, 85: 139-150. |
[32] | BARDET J P. Observations on the effects of particlerotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(94): 159-182. |
[33] | POTYONDY D O, CUNDALL P A. A bonded-particlemodel for rock [J]. International Journal of Rock Mechanicsand Mining Sciences, 2004, 41(8): 1329-1364. |
[34] | MEISELS R, TOIFL M, HARTLIEB P, et al. Microwavepropagation and absorption and its thermomechanicalconsequences in heterogeneous rocks [J].International Journal of Mineral Processing, 2015,135(3): 40-51. |
[35] | TANG Y, XU G B, YAN Y, et al. Thermal crackinganalysis of microbial cemented sand under variousstrains based on the DEM [J]. Advances in MaterialsScience and Engineering, 2018, 2018: 7528746. |
[36] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2008,45(5): 789-799. |
[37] | YUAN M D, XIAO M, YANG G H. Crack state ofChangsha arch dam and analysis on the effects of coldwave [J]. Journal of Hydroelectric Engineering, 2012,31(3): 175-181 (in Chinese). |
[38] | ZHOU W, LI S R, LIU X H, et al. Simulation of concretespecimens temperature cracks using particle flowcode [J]. Journal of Hydroelectric Engineering, 2013,32(3): 187-193 (in Chinese). |
[39] | WANG Z L, LI Y C, WANG J G. A damage-softeningstatistical constitutive model considering rock residualstrength [J]. Computers & Geosciences, 2007, 33(1):1-9. |
[1] | GUO Deping, LI Zheng, PENG Senlin, ZENG Zhikai, WU Daifeng. Numerical Calculation Method for Crack Dynamic Propagation Based on Newmark Implicit Time Integration Scheme [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 689-697. |
[2] | ZHANG Songlin, MA Dongliang, WANG Deyu. Method for Plate Crack Damage Detection Based on Long Short-Term Memory Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 527-535. |
[3] | LIU Xinwei, YANG Jian, WANG Xinger, LIU Qiang. Post-Breakage Strength of Laminated Glass Panel Cracked by Impact [J]. Journal of Shanghai Jiaotong University, 2020, 54(3): 227-238. |
[4] | ZHANG Zixin,XIAO Shihui,LIU Tongwei,HUANG Xin,HE Ren. Field Test and Numerical Analysis of a New Water-Proof System for a Shield Tunnel [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 688-695. |
[5] | KONG Liang,LING Zhanxiang,WANG Ze,WANG Min,PAN Hua,LEI Ming. Morphology and Distribution of the Liquid Metal Embrittlement Crack in the Resistance Spot Welded Joint of the Galvanized Q&P980 Steel [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 704-707. |
[6] | LIU Bingyi,ZHANG Jige,WANG Dezhong,LI Bin. Crack Life Evaluation of Flywheel for Canned Main Pump [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 315-320. |
[7] | YU Honggan,HUANG Xiaoping,ZHANG Yongkuang. Fatigue Life Prediction of a Hatch Corner Based on the Spectral Analysis and Fatigue Crack Growth Approaches [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 153-160. |
[8] | ZHU Yeting,ZHU Yanfei,ZHANG Zixin,ZHUANG Qianwei,ZHENG Yifeng. Prediction and Visualization of Crack Width for the Prototype Test on Special-Shaped Shield Segments [J]. Journal of Shanghai Jiaotong University, 2019, 53(10): 1259-1268. |
[9] | HU Jun *(胡俊), REN Jianwei (任建伟), WU Deyi (吴德义). Dynamic Mechanical Properties of EPS Concrete Under Impact Loading [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 94-100. |
[10] | WANG Jiamei1,SU Haozhan1,HE Kun2,ZHANG Lefu1. Effects of Potential on 508III-52M-690 Dissimilar Weld Joint [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 447-454. |
[11] | LIU Jianhui (刘俭辉), WEI Yaobing (韦尧兵), YAN Changfeng (剡昌锋), LANG Shanshan (郎珊珊). Method for Predicting Crack Initiation Life of Notched Specimen Based on Damage Mechanics [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 286-290. |
[12] | CHEN Kai,DU Donghai,ZHANG Lefu. Corrosion Fatigue Crack Growth Behavior of Alloy 690 in PressurizedWater Reactor Environment [J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1281-1286. |
[13] | CAO Ling1,2* (曹 玲), ZHANG Hua1 (张 华), CHEN Yong1 (陈 勇). Hydraulic Properties Analysis of the Unsaturated Cracked Soil [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(1): 35-044. |
[14] | LI Li-wei, HAO Lin, ZHOU Wei-wei, PEI Xiao-mei, CAO Jing. Evaluation on Submarine Pipeline with Crack Damage and Software Development [J]. Ocean Engineering Equipment and Technology, 2016, 3(1): 12-19. |
[15] | HE Shijiu,ZHANG Xiaojing,WANG Hai. Analytical Methodology of Predicting Mode Ⅰ Stress Intensity Factor for Cracked Panels with Bonded Stiffener [J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 251-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||