[1] |
SHEN J H, WHEELER C, ILIC D, et al. Application of open source FEM and DEM simulations for dynamic belt deflection modelling[J]. Powder Technology, 2019, 357:171-185.
doi: 10.1016/j.powtec.2019.08.068
URL
|
[2] |
ELGUEDJ T, JAN Y, COMBESCURE A, et al. X-FEM Analysis of dynamic crack growth under transient loading in thick shells[J]. International Journal of Impact Engineering, 2018, 122:228-250.
doi: 10.1016/j.ijimpeng.2018.08.013
URL
|
[3] |
SHARMA V, FUJISAWA K, MURAKAMI A. Space-time FEM with block-iterative algorithm for nonlinear dynamic fracture analysis of concrete gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2020, 131:105995.
doi: 10.1016/j.soildyn.2019.105995
URL
|
[4] |
SUN J S, LEE K H, LEE H P. Comparison of implicit and explicit finite element methods for dynamic problems[J]. Journal of Materials Processing Technology, 2000, 105(1/2):110-118.
doi: 10.1016/S0924-0136(00)00580-X
URL
|
[5] |
NILSSON K, LIDSTRÖM P. Simulation of ductile fracture of slabs subjected to dynamic loading using cohesive elements[J]. International Journal of Da-mage Mechanics, 2012, 21(6):871-892.
|
[6] |
BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620.
doi: 10.1002/(ISSN)1097-0207
URL
|
[7] |
ZHOU X P, ZHANG J Z, BERTO F. Fracture ana-lysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio[J]. Journal of Materials in Civil Engineering, 2020, 32(5):04020085.
doi: 10.1061/(ASCE)MT.1943-5533.0003151
URL
|
[8] |
ZHOU X P, CHENG H. Multidimensional space method for geometrically nonlinear problems under total Lagrangian formulation based on the extended finite-element method[J]. Journal of Engineering Mechanics, 2017, 143(7):04017036.
doi: 10.1061/(ASCE)EM.1943-7889.0001241
URL
|
[9] |
CHEN J W, ZHOU X P. The enhanced extended finite element method for the propagation of complex branched cracks[J]. Engineering Analysis With Boundary Elements, 2019, 104:46-62.
doi: 10.1016/j.enganabound.2019.03.028
URL
|
[10] |
STOLARSKA M, CHOPP D L, MOËS N, et al. Modelling crack growth by level sets in the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2001, 51(8):943-960.
doi: 10.1002/nme.201
URL
|
[11] |
ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250:65-88.
doi: 10.1016/j.enggeo.2019.01.012
URL
|
[12] |
CHEN J W, ZHOU X P, BERTO F. The improvement of crack propagation modelling in triangular 2D structures using the extended finite element method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(2):397-414.
|
[13] |
黄宏伟, 刘德军, 薛亚东, 等. 基于扩展有限元的隧道衬砌裂缝开裂数值分析[J]. 岩土工程学报, 2013, 35(2):266-275.
|
|
HUANG Hongwei, LIU Dejun, XUE Yadong, et al. Numerical analysis of cracking of tunnel linings based on extended finite element[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2):266-275.
|
[14] |
阮滨, 陈国兴, 王志华. 基于扩展有限元法的均质土坝裂纹模拟[J]. 岩土工程学报, 2013, 35(Sup.2):49-54.
|
|
RUAN Bin, CHEN Guoxing, WANG Zhihua. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.2):49-54.
|
[15] |
MENOUILLARD T, BELYTSCHKO T. Dynamic fracture with meshfree enriched XFEM[J]. Acta Mechanica, 2010, 213(1/2):53-69.
doi: 10.1007/s00707-009-0275-z
URL
|
[16] |
WEN L F, TIAN R. Improved XFEM: Accurate and robust dynamic crack growth simulation[J]. Compu-ter Methods in Applied Mechanics and Engineering, 2016, 308:256-285.
|
[17] |
ZHOU X P, ZHANG J Z, QIAN Q H, et al. Expe-rimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques[J]. Journal of Structural Geology, 2019, 126:129-145.
doi: 10.1016/j.jsg.2019.06.003
URL
|
[18] |
WANG Y T, ZHOU X P, XU X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics[J]. Engineering Fracture Mechanics, 2016, 163:248-273.
doi: 10.1016/j.engfracmech.2016.06.013
URL
|
[19] |
WU Z J, FAN L F, LIU Q S, et al. Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method[J]. Engineering Geology, 2017, 225:49-60.
doi: 10.1016/j.enggeo.2016.08.018
URL
|
[20] |
CHEN S, HANSEN J M, TORTORELLI D A. Unconditionally energy stable implicit time integration: Application to multibody system analysis and design[J]. International Journal for Numerical Methods in Engineering, 2000, 48(6):791-822.
doi: 10.1002/(ISSN)1097-0207
URL
|
[21] |
WANG J R, WU J C, WANG D D. A quasi-consis-tent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions[J]. Engineering Analysis With Boundary Elements, 2020, 110:42-55.
doi: 10.1016/j.enganabound.2019.10.002
URL
|
[22] |
WANG D D, WU J C. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349:628-672.
doi: 10.1016/j.cma.2019.02.029
URL
|
[23] |
WANG D D, WANG J R, WU J C, et al. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations[J]. Frontiers of Structural and Civil Engineering, 2019, 13(2):337-352.
doi: 10.1007/s11709-018-0467-5
URL
|