Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (6): 699-705.doi: 10.1007/s12204-019-2132-0
Previous Articles Next Articles
ZHONG Haowen (钟昊文), WANG Chao (王超), TUO Hongya (庹红娅), HU Jian (胡健), QIAO Lingfeng (乔凌峰), JING Zhongliang (敬忠良)
Online:
2019-12-15
Published:
2019-12-07
Contact:
TUO Hongya (庹红娅)
E-mail: tuohy@sjtu.edu.cn
CLC Number:
ZHONG Haowen (钟昊文), WANG Chao (王超), TUO Hongya (庹红娅), HU Jian (胡健), QIAO Lingfeng (乔凌峰), JING Zhongliang (敬忠良). Transfer Learning Based on Joint Feature Matching and Adversarial Networks[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 699-705.
[1] | PAN S J, YANG Q. A survey on transfer learning [J].IEEE Transactions on Knowledge and Data Engineering,2010, 22(10): 1345-1359. |
[9] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarialdiscriminative domain adaptation [C]//IEEEConference on Computer Vision and Pattern Recognition.Honolulu, HI, USA: IEEE, 2017: 7167-7176. |
[10] | LIU M Y, TUZEL O. Coupled generative adversarialnetworks [C]//29th Conference on Neural InformationProcessing Systems (NIPS 2016). Barcelona, Spain:NIPS, 2016: 469-477. |
[2] | PAN S J, TSANG I W, KWOK J T, et al. Domainadaptation via transfer component analysis [J]. IEEETransactions on Neural Networks, 2011, 22(2): 199-210. |
[11] | SHEN J, QU Y R, ZHANGWN, et al.Wasserstein distanceguided representation learning for domain adaptation[C]//Thirty-Second AAAI Conference on ArtificialIntelligence. New Orleans, USA: AAAI, 2018:4058-4065. |
[3] | GONG B, SHI Y, SHA F, et al. Geodesic flow kernelfor unsupervised domain adaptation [C]//IEEE Conferenceon Computer Vision and Pattern Recognition.Providence, RI, USA: IEEE, 2012: 2066-2073. |
[12] | GOODFELLOW I J, POUGET-ABADIE J, MIRZAM, et al. Generative adversarial nets [C]//28th AnnualConference on Neural Information Processing Systems.Montreal, Canada: NIPS, 2014: 2672-2680. |
[4] | LONG M S, CAO Y, WANG J M, et al. Learningtransferable features with deep adaptation networks[C]//32nd International Conference on MachineLearning. Lille, France: PMLR, 2015: 97-105. |
[13] | GHIFARY M, KLEIJN W B, ZHANG M J. Domainadaptive neural networks for object recognition [M].Lecture Notes in Computer Science. Cham, Switzerland:Springer International Publishing Switzerland,2014: 898-904. |
[5] | LONG M S, ZHU H, WANG J M, et al. Unsuperviseddomain adaptation with residual transfer networks[C]//30th Conference on Neural InformationProcessing Systems (NIPS 2016). Barcelona, Spain:NIPS, 2016: 136-144. |
[6] | LONG M S, ZHU H, WANG J M, et al. Deep transferlearning with joint adaptation networks [C]//34th InternationalConference on Machine Learning. Sydney,Australia: PMLR, 2017: 2208-2217. |
[14] | TZENG E, HOFFMAN J, ZHANG N, et al.Deep domain confusion: Maximizing for domaininvariance [EB/OL]. [2019-04-23]. https://arxiv.org/pdf/1412.3474v1.pdf. |
[7] | GRETTON A, BORGWARDT K M, RASCH M J, etal. A kernel two-sample test [J]. Journal of MachineLearning Research, 2012, 13(3): 723-773. |
[15] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neuralnetworks [C]//26th Annual Conference on NeuralInformation Processing Systems. Lake Tahoe, Nevada,USA: NIPS, 2012: 1097-1105. |
[8] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domainadversarialtraining of neural networks [J]. Journal ofMachine Learning Research, 2016, 17(1): 1-35. |
[9] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarialdiscriminative domain adaptation [C]//IEEEConference on Computer Vision and Pattern Recognition.Honolulu, HI, USA: IEEE, 2017: 7167-7176. |
[16] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferableare features in deep neural networks? [C]//28thAnnual Conference on Neural Information ProcessingSystems. Montreal, Canada: NIPS, 2014: 3320-3328. |
[17] | MA S, FU J L, CHEN W C, et al. DA-GAN: Instancelevelimage translation by deep attention generativeadversarial networks [C]//IEEE ICVF Conference onComputer Vision and Pattern Recognition. Salt LakeCity, USA: IEEE, 2018: 5657-5666. |
[10] | LIU M Y, TUZEL O. Coupled generative adversarialnetworks [C]//29th Conference on Neural InformationProcessing Systems (NIPS 2016). Barcelona, Spain:NIPS, 2016: 469-477. |
[18] | SALIMANS T, GOODFELLOW I, ZAREMBA W, etal. Improved techniques for training GANs [C]//29thConference on Neural Information Processing Systems(NIPS 2016). Barcelona, Spain: NIPS, 2016: 2234-2242. |
[11] | SHEN J, QU Y R, ZHANGWN, et al.Wasserstein distanceguided representation learning for domain adaptation[C]//Thirty-Second AAAI Conference on ArtificialIntelligence. New Orleans, USA: AAAI, 2018:4058-4065. |
[19] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired imageto-image translation using cycle-consistent adversarialnetworks [C]//IEEE International Conference onComputer Vision. Venice, Italy: IEEE, 2017: 2242-2251. |
[12] | GOODFELLOW I J, POUGET-ABADIE J, MIRZAM, et al. Generative adversarial nets [C]//28th AnnualConference on Neural Information Processing Systems.Montreal, Canada: NIPS, 2014: 2672-2680. |
[20] | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N,et al. Domain separation networks [C]//29th Conferenceon Neural Information Processing Systems (NIPS2016). Barcelona, Spain: NIPS, 2016: 343-351. |
[13] | GHIFARY M, KLEIJN W B, ZHANG M J. Domainadaptive neural networks for object recognition [M].Lecture Notes in Computer Science. Cham, Switzerland:Springer International Publishing Switzerland,2014: 898-904. |
[21] | LI C L, CHANG W C, CHENG Y, et al. MMD GAN:Towards deeper understanding of moment matchingnetwork [C]//31st Annual Conference on Neural InformationProcessing Systems (NIPS 2017). Long Beach,CA, USA: NIPS, 2017: 2203-2213. |
[14] | TZENG E, HOFFMAN J, ZHANG N, et al.Deep domain confusion: Maximizing for domaininvariance [EB/OL]. [2019-04-23]. https://arxiv.org/pdf/1412.3474v1.pdf. |
[22] | DZIUGAITE G K, ROY D M, GHAHRAMANI Z.Training generative neural networks via maximummean discrepancy optimization [C]//31st Conferenceon Uncertainty in Artificial Intelligence. Amsterdam,the Netherlands: AUAI, 2015: 258-267. |
[15] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neuralnetworks [C]//26th Annual Conference on NeuralInformation Processing Systems. Lake Tahoe, Nevada,USA: NIPS, 2012: 1097-1105. |
[23] | SUN B C, FENG J S, SAENKO K. Return of frustratinglyeasy domain adaptation [C]//Association for theAdvance of Artificial Intelligence Conference. Phoenix,Arizona, USA: AAAI Press, 2016: 2058-2065. |
[16] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferableare features in deep neural networks? [C]//28thAnnual Conference on Neural Information ProcessingSystems. Montreal, Canada: NIPS, 2014: 3320-3328. |
[24] | DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: Adeep convolutional activation feature for generic visualrecognition [C]//31st International Conference on MachineLearning. Beijing, China: ICML, 2014: 647-655. |
[17] | MA S, FU J L, CHEN W C, et al. DA-GAN: Instancelevelimage translation by deep attention generativeadversarial networks [C]//IEEE ICVF Conference onComputer Vision and Pattern Recognition. Salt LakeCity, USA: IEEE, 2018: 5657-5666. |
[18] | SALIMANS T, GOODFELLOW I, ZAREMBA W, etal. Improved techniques for training GANs [C]//29thConference on Neural Information Processing Systems(NIPS 2016). Barcelona, Spain: NIPS, 2016: 2234-2242. |
[19] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired imageto-image translation using cycle-consistent adversarialnetworks [C]//IEEE International Conference onComputer Vision. Venice, Italy: IEEE, 2017: 2242-2251. |
[20] | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N,et al. Domain separation networks [C]//29th Conferenceon Neural Information Processing Systems (NIPS2016). Barcelona, Spain: NIPS, 2016: 343-351. |
[21] | LI C L, CHANG W C, CHENG Y, et al. MMD GAN:Towards deeper understanding of moment matchingnetwork [C]//31st Annual Conference on Neural InformationProcessing Systems (NIPS 2017). Long Beach,CA, USA: NIPS, 2017: 2203-2213. |
[22] | DZIUGAITE G K, ROY D M, GHAHRAMANI Z.Training generative neural networks via maximummean discrepancy optimization [C]//31st Conferenceon Uncertainty in Artificial Intelligence. Amsterdam,the Netherlands: AUAI, 2015: 258-267. |
[23] | SUN B C, FENG J S, SAENKO K. Return of frustratinglyeasy domain adaptation [C]//Association for theAdvance of Artificial Intelligence Conference. Phoenix,Arizona, USA: AAAI Press, 2016: 2058-2065. |
[24] | DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: Adeep convolutional activation feature for generic visualrecognition [C]//31st International Conference on MachineLearning. Beijing, China: ICML, 2014: 647-655. |
[1] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[2] | LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. |
[3] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[4] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[5] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[6] | SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80. |
[7] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[8] | WANG Yuexing, WU Yongguo, XU Chuangang. Infrared Ship Target Detection Algorithm Based on Deep Transfer Learning [J]. Air & Space Defense, 2021, 4(4): 61-66. |
[9] | QI Shengyong, ZANG Yuejin, LYU Guoyun, DU Ming. Research on Air Target Image Generation Algorithm Based on Generative Adversarial Networks [J]. Air & Space Defense, 2021, 4(2): 67-. |
[10] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[11] | XIANG Ke* (向 可), WANG Xuan-yin (王宣银), CAO Song-xiao (曹晓松), FU Xiao-jie (富晓杰). Intelligent Video Surveillance for Checking Attendance of Traffic Controllers in Level Crossing [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(1): 41-49. |
[12] | MA Guo-hong* (马国红), WANG Cong (王 聪), LIU Pei (刘 沛), ZHU Shu-lin (朱书林). Sequential Similarity Detection Algorithm Based on Image Edge Feature [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(1): 79-83. |
[13] | LIU Hongtao,LIANG Zhenning,HU Wen,MO Jinqiu,WANG Shigang. A Method for Deformation and Force Measurement of Micro-Cantilever Based on Local Feature Point Detecting and Matching [J]. Journal of Shanghai Jiaotong University, 2013, 47(12): 1842-1847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||