HU Sheng-yong* (胡盛勇), LUO Jun (罗军). Uncertainty Quantification for Structural Optimal Design Based on Evidence Theory[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 338-343.
Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures [J]. AIAA Journal,1974, 12(2): 185-190.
[2]
de Vries D K, van den Hof M F. Quantification of model uncertainty from experimental data: A mixed deterministic-probabilistic approach [C]//Proceedings of the 32nd Conference on Decision and Control. San Antonlo: IEEE, 1993: 3512-3513.
[3]
Bae H R, Grandhi R V, Canfield R A. An approximation approach for uncertainty quantification using evidence thoery [J]. Reliability Engineering and System Safety, 2004, 86: 215-225.
[4]
Hasselman T. Quantification of uncertainty in structural dynamic models [J]. Journal of Aerospace Engneering,2001, 14: 158-165.
[5]
Zadeh L A. Fuzzy sets [J]. Informmation and Control,1965, 8: 338-353.
[6]
Shafer G. A mathematical theory of evidence [M].Princeton, USA: Princeton University Press, 1976.
[7]
Mooer R E. Methods and applications of interval analysis [M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1979.
[8]
Helton J C, Johnson J D, Oberkamp W L, et al.Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty [J]. Reliability Engineering & System Safety, 2006, 91: 1414-1434.
[9]
Kraan B, Bedford T. Probabilistic inversion of expert judgemens in the quantification of model uncertainty[J]. Management Science, 2005, 51(6): 995-1006.
[10]
Bae H R, Grandhi R V, Canfield R A. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures [J]. Computer and Structures, 2004, 82: 1101-1112.