[1] Adiletta G, Guido A R, Rossi C. Chaotic motion of a rigid rotor in short journal bearing [J]. Nonlinear Dynamics, 1996, 10(3): 251-269. [2] Chang-Jian C W, Chen C K. Bifurcation and chaos analysis of a flexible rotor supported by turbulent long journal bearings [J]. Chaos, Solitons and Fractals, 2007, 34(4): 1160-1179. [3] Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors [J]. Reviews of Modern Physics, 1985, 57(3): 617-656. [4] Grassberger P, Procaccia I. Characterization of strange attractors [J]. Physical Review Letters, 1983, 50(5): 346-349. [5] Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiment [J]. Physical Review A, 1976, 14(1): 2338-2345. [6] Kim B J, Choe G H. High precision numerical estimation of the largest Lyapunov exponent [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1378-1384. [7] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D, 1985, 16(3): 285-317. [8] Stefanski A, Dabrowski A, Kapitaniak T. Evaluation of the largest Lyapunov exponent in dynamical systems with time delay [J]. Chaos, Solitons and Fractals, 2005, 23(5): 1651-1659. [9] Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems [J]. Progress of Theoretical Physics, 1979, 61(6): 1605-1616. [10] Benettin G, Galgani L, Giorgilli A, et al. Lyapunov characteristic exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them. Part I. Theory [J]. Meccanica, 1980, 15(1): 9-20. [11] Benettin G, Galgani L, Giorgilli A, et al. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them. Part II. Numerical application [J]. Meccanica, 1980, 15(1): 21-30. [12] Takens F. Detecting strange attractors in turbulence [J]. Lecture Notes in Mathematics, 1981, 898(1): 366-381. [13] Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series [J]. Physical Review Letters, 1985, 55(10): 1082-1085. [14] Eckmann J P, Kamphorst S O, Ruelle D, et al. Lyapunov exponents from a time series [J]. Physical Review Letters, 1986, 34(9): 4971-4979. [15] Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D, 1993, 65(1-2): 117-134. [16] Grond F, Diebner H H, Sahle S, et al. A robust, locally interpretable algorithm for Lyapunov exponents [J]. Chaos, Solitions and Fractals, 2003, 16(5): 841-852. [17] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127(1-2): 48-60. [18] Brock W A, Hsieh D A, Lebaron B. Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence [M]. Cambridge: MIT Press, 1993: 42-54. [19] Sato S, Sano M, Sawada Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems [J]. Progress of Theoretical Physics, 1987, 77(1): 1-5. [20] Capone G. Orbital motions of rigid symmetric rotor supported on journal bearings [J]. La Meccanica Italiana, 1986, 199: 37-46.
|