J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 53-65.doi: 10.1007/s12204-023-2628-5
• Medicine-Engineering Interdisciplinary • Previous Articles
ZHAN Heqing1 (詹何庆), HAN Guilai1 (韩贵来), WEI Chuan’an1 (魏传安), LI Zhiqun2* (李治群)
Accepted:
2022-10-10
Online:
2025-01-28
Published:
2025-01-28
CLC Number:
ZHAN Heqing1 (詹何庆), HAN Guilai1 (韩贵来), WEI Chuan’an1 (魏传安), LI Zhiqun2* (李治群). Applications of Artificial Intelligence in Cardiac Electrophysiology and Clinical Diagnosis with Magnetic Resonance Imaging and Computational Modeling Techniques[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65.
[1] GOLDMAN M R, BRADY T J, PYKETT I L, et al. Quantification of experimental myocardial infarction using nuclear magnetic resonance imaging and paramagnetic ion contrast enhancement in excised canine hearts [J]. Circulation, 1982, 66(5): 1012-1016. [2] WOLFE C L. Assessment of myocardial ischemia and infarction by contrast enhanced magnetic resonance imaging [J]. Cardiology Clinics, 1989, 7(3): 685-696. [3] FILIPCHUK N G, PESHOCK R M, MALLOY C R, et al. Detection and localization of recent myocardial infarction by magnetic resonance imaging [J]. The American Journal of Cardiology, 1986, 58(3): 214- 219. [4] MACHANAHALLI BALAKRISHNA A, ISMAYL M, THANDRA A, et al. Diagnostic value of cardiac magnetic resonance imaging and intracoronary optical coherence tomography in patients with a working diagnosis of myocardial infarction with non-obstructive coronary arteries - A systematic review and metaanalysis [J]. Current Problems in Cardiology, 2023, 48(6): 101126. [5] LINTINGRE P F, NIVET H, CLEMENT GUINAUDEAU S, et al. High-resolution late gadolinium enhancement magnetic resonance for the diagnosis of myocardial infarction with nonobstructed coronay arteries [J]. JACC : Cardiovascular Imaging, 2020, 13(5): 1135-1148. [6] TOUPIN S, PEZEL T, BUSTIN A, et al. Wholeheart high-resolution late gadolinium enhancement: Techniques and clinical applications [J]. Journal of Magnetic Resonance Imaging, 2022, 55(4): 967-987. [7] HAUSVATER A, PASUPATHY S, TORNVALL P, et al. ST-segment elevation and cardiac magnetic resonance imaging findings in myocardial infarction with non-obstructive coronary arteries [J]. International Journal of Cardiology, 2019, 287: 128-131. [8] RIBEIRO J M, DE JAEGERE P P. Artificial intelligence in cardiovascular medicine - are we ready? [J]. Trends in Cardiovascular Medicine, 2022. [9] RANKA S, REDDY M, NOHERIA A. Artificial intelligence in cardiovascular medicine [J]. Current Opinion in Cardiology, 2020, 36(1): 26-35. [10] NYG?ARDS M E, HULTING J. An automated system for ECG monitoring [J]. Computers and Biomedical Research, 1979, 12(2): 181-202. [11] FRANKEL P, ROTHMEIER J, JAMES D, et al. A computerized system for ECG monitoring [J]. Computers and Biomedical Research, 1975, 8(6): 560-567. [12] YANOWITZ F, KINIAS P, RAWLING D, et al. Accuracy of a continuous real-time ECG dysrhythmia monitoring system [j]. Circulation, 1974, 50(1): 65-72. [13] PARK J, AN J, KIM J, et al. Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems [J]. Computer Methods and Programs in Biomedicine, 2022, 214: 106521. [14] KASHOU A H, KO W Y, ATTIA Z I, et al. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program [J]. Cardiovascular Digital Health Journal, 2020, 1(2): 62-70. [15] SMITH S W, RAPIN J, LI J, et al. A deep neural network for 12 lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation [J]. IJC Heart & Vasculature, 2019, 25: 100423. [16] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nature Medicine, 2019,25(1): 65-69. [17] RIBEIRO A H, RIBEIRO M H, PAIXAO G M M, et al. Author Correction: Automatic diagnosis of the 12-lead ECG using a deep neural network [J]. Nature Communications, 2020, 11: 2227. [18] ATTIA Z I, KAPA S, LOPEZ-JIMENEZ F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J]. Nature Medicine, 2019, 25(1): 70-74. [19] ADEDINSEWO D, CARTER R, ATTIA Z I, et al. Application of an artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency room with dyspnea [J]. Journal of the American College of Cardiology, 2020, 75(11): 3598. [20] LEE H, SHIN S Y, SEO M, et al. Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks [J]. Scientific Reports, 2016, 6: 32390. [21] DOSTE R, LOZANO M, JIMENEZ-PEREZ G, et al. Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias [J]. Frontiers in Physiology, 2022, 13: 909372. [22] ATTIA Z I, NOSEWORTHY P A, LOPEZJIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction [J]. The Lancet, 2019, 394(10201):861-867. [23] EBRAHIMZADEH E, KALANTARI M, JOULANI M, et al. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combine feature vector and mixture of expert classification on HRV signal [J]. Computer Methods and Programs in Biomedicine, 2018, 165: 53-67. [24] JEKOVA I, CHRISTOV I, KRASTEVA V. Atrioventricular synchronization for detection of atrial fibrillation and flutter in one to twelve ECG leads using a dense neural network classifier [J]. Sensors, 2022, 22(16): 6071. [25] KO W Y, SIONTIS K C, ATTIA Z I, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram [J]. Journal of the American College of Cardiology, 2020, 75(7): 722-733. [26] TISON G H, ZHANG J, DELLING F N, et al. Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery [J]. Circulation Cardiovascular Quality and Outcomes, 2019, 12(9): e005289. [27] GALLOWAY C D, VALYS A V, SHREIBATI J B, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram [J]. JAMA Cardiology, 2019, 4(5): 428. [28] TOKODI M, SCHWERTNER W R, KOVACS A, et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score [J]. European Heart Journal, 2020, 41(18): 1747-1756. [29] CIKES M, SANCHEZ-MARTINEZ S, CLAGGETT B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J]. European Journal of Heart Failure, 2019, 21(1): 74-85. [30] FEENY A K, RICKARD J, PATEL D, et al. Machine learning prediction of response to cardiac resynchronization therapy: Improvement versus current guidelines [J]. Circulation: Arrhythmia and Electrophysiology, 2019, 12(7): e007316. [31] LEVY A E, BISWAS M, WEBER R, et al. Applications of machine learning in decision analysis for dose management for dofetilide [J]. PLoS One, 2019, 14(12): e0227324. [32] ATTIA Z I, SUGRUE A, ASIRVATHAM S J, et al. Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study [J]. PLoS One, 2018, 13(8): e0201059. [33] SIMJANOSKA M, GJORESKI M, GAMS M, et al. Non-invasive blood pressure estimation from ECG using machine learning techniques [J]. Sensors, 2018, 18(4): 1160. [34] ATTIA ZACHI I, FRIEDMAN PAUL A, NOSEWORTHY PETER A, et al. Age and sex estimation using artificial intelligence from standard 12 lead ECGs [J]. Circulation Arrhythmia and Electrophysiology, 2019, 12(9): e007284. [35] DRAELOS R L, EZEKIAN J E, ZHUANG F, et al. Genesis: Gene-specific machine learning models for variants of uncertain significance found in catecholaminergic polymorphic ventricular Tachycardia and Long QT syndrome-associated genes [J]. Circulation: Arrhythmia and Electrophysiology, 2022, 15(4): e010326. [36] SUNDARAM L, GAO H, PADIGEPATI S R, et al. Predicting the clinical impact of human mutation with deep neural networks [J]. Nature Genetics, 2018, 50(8): 1161-1170. [37] GOROSPE G, ZHU R J, MILLROD M A, et al. Automated grouping of action potentials of human embryonicstem cell-derived cardiomyocytes [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(9): 2389-2395. [38] ZHU R J, MILLROD M A, ZAMBIDIS E T, et al. Variability of action potentials within and among cardiac cell clusters derived from human embryonic stem cells [J]. Scientific Reports, 2016, 6: 18544. [39] BEDBROOK C N, YANG K K, ROBINSON J E, et al. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics [J]. Nature Methods, 2019, 16(11): 1176-1184. [40] SAHLI COSTABAL F, MATSUNO K, YAO J, et al. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 313-333. [41] KIM H, NAM H. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers [J]. Computational Biology and Chemistry, 2020, 87:107286. [42] SHARIFI M, BUZATU D, HARRIS S, et al. Development of models for predicting Torsade de Pointes cardiac arrhythmias using perceptron neural networks[J]. BMC Bioinformatics, 2017, 18(14): 93-102. [43] CRUCES P D, TORKAR D, ARINI P D. Dynamic features of cardiac vector as alternative markers of drug-induced spatial dispersion [J]. Journal of Pharmacological and Toxicological Methods, 2020, 104: 106894. [44] AGHASAFARI P, YANG P C, KERNIK D C, et al. A deep learning algorithm to translate and classify cardiac electrophysiology [J]. eLife, 2021, 10: 68335. [45] JUHOLA M, PENTTINEN K, JOUTSIJOKI H, et al. Analysis of drug effects on iPSC cardiomyocytes with machine learning [J]. Annals of Biomedical Engineering, 2021, 49(1): 129-138. [46] LAWSON B A, BURRAGE K, BURRAGE P, et al. Slow recovery of excitability increases ventricular fibrillation risk as identified by emulation [J]. Frontiers in Physiology, 2018, 9: 1114. [47] MULIMANI M K, ALAGESHAN J K, PANDIT R. Deep-learning-assisted detection and termination of spiral and broken-spiral waves in mathematical models for cardiac tissue [J]. Physical Review Research, 2020, 2(2): 023155. [48] SAHLI COSTABAL F, YANG Y B, PERDIKARIS P, et al. Physics-informed neural networks for cardiacactivation mapping [J]. Frontiers in Physics, 2020, 8:42. [49] NEUMANN D, MANSI T. Machine learning methods for robust parameter estimation [M]//Artificial intelligence for computational modeling of the heart. London: Academic Press, 2020: 161-181. [50] DHAMALA J, BAJRACHARYA P, AREVALO H J, et al. Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models [J]. Medical Image Analysis, 2020, 62: 101670. [51] FERRER-ALBERO A, GODOY E J, LOZANO M, et al. Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps [J]. PLoS One, 2017, 12(7): e0181263. [52] RONEY C H, BEACH M L, MEHTA A M, et al. In silico comparison of left atrial ablation techniques that target the anatomical, structural, and electrical substrates of atrial fibrillation [J]. Frontiers in Physiology, 2020, 11: 572874. [53] GIFFARD-ROISIN S, DELINGETTE H, JACKSON T, et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(2): 343-353. [54] YILMAZ B, MACLEOD R S, PUNSKE B B, et al. Venous catheter based mapping of ectopic epicardial activation: Training data set selection for statistical estimation [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(11): 1823-1831. [55] PRAKOSA A, SERMESANT M, ALLAIN P, et al. Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2): 235-245. [56] IRONI L, TENTONI S. Interplay of spatial aggregation and computational geometry in extracting diagnostic features from cardiac activation data [J]. Computer Methods and Programs in Biomedicine, 2012, 107(3): 456-467. [57] COLLETTI P M. Multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis [J]. Circulation: Cardiovascular Imaging, 2019, 12(10): e009214. [58] AUGUSTO J B, DAVIES R H, BHUVA A N, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: A comparison with human test-retest performance [J]. The Lancet Digital Health, 2021,3(1): e20-e28. [59] FAHMY A S, NEISIUS U, CHAN R H, et al. Threedimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: A multicenter multivendor study [J]. Radiology, 2020, 294(1): 52-60. [60] RUIJSINK B, PUYOL-ANTON E, OKSUZ I, et al.Fully automated, quality-controlled cardiac analysis from CMR [J]. JACC : Cardiovascular Imaging, 2020,13(3): 684-695. [61] ANKENBRAND M J, LOHR D, SCHLOTELBURGW, et al. Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahigh-field MRI [J]. Magnetic Resonance in Medicine, 2021,86(4): 2179-2191. [62] ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice [J]. Circulation, 2018, 138(16): 1623-1635. [63] MACGREGOR R M, GUO A X, MASOOD M F, et al. Machine learning outcome prediction in dilated cardiomyopathy using regional left ventricular multiparametric strain [J]. Annals of Biomedical Engineering, 2021, 49(2): 922-932. [64] SATRIANO A, AFZAL Y, SARIM AFZAL M, et al. Neural-network-based diagnosis using 3-dimensional myocardial architecture and deformation: Demonstration for the differentiation of hypertrophic cardiomyopathy [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 584727. [65] GOTO S, SOLANKI D, JOHN J, et al. Multinational federated learning approach to train ECG and echocardiogram models for hypertrophic cardiomyopathy detection [J]. Circulation, 2022, 146: 755-769. [66] AVARD E, SHIRI I, HAJIANFAR G, et al. Noncontrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection [J]. Computers in Biology and Medicine, 2022, 141: 105145. [67] ZHANG N, YANG G A, GAO Z F, et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI [J]. Radiology, 2019,291(3): 606-617. [68] MURAKI R, TERAMOTO A, SUGIMOTO K, et al. Automated detection scheme for acute myocardial infarction using convolutional neural network and long short-term memory [J]. PLoS One, 2022, 17(2): e0264002. [69] HERNANDEZ-CASILLAS A, DEL-CANTO I, RUIZ-ESPANA S, et al. Detection and classification of myocardial infarction transmurality using cardiac MR image analysis and machine learning algorithms [C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Glasgow: IEEE, 2022: 1686-1689. [70] CORNHILL AIDAN K, STEVEN D, ALESSANDRO S, et al. Machine learning patient-specific prediction of heart failure hospitalization using cardiac MRIbased phenotype and electronic health Information [J]. Frontiers in Cardiovascular Medicine, 2022, 9:890904. [71] ZHONG H, WU J Q, ZHAO W Y, et al. A selfsupervised learning based framework for automatic heart failure classification on cine cardiac magnetic resonance image [C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Mexico: IEEE, 2021: 2887-2890. [72] KERMANI S, GHELICH OGHLI M, MOHAMMADZADEH A, et al. NF-RCNN: Heart localization and right ventricle wall motion abnormality detection in cardiac MRI [J]. Physica Medica, 2020, 70: 65-74. [73] AFSHIN M, BEN AYED I, PUNITHAKUMAR K, et al. Regional assessment of cardiac left ventricular myocardial function via MRI statistical features [J]. IEEE Transactions on Medical Imaging, 2014, 33(2): 481-494. [74] LIN X, YANG F, CHEN Y, et al. Echocardiographybased AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 903660. [75] HUANG M S, WANG C S, CHIANG J, et al. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography [J]. Circulation, 2020, 142: 1510-1520. [76] PAPANDRIANOS N I, FELEKI A, PAPAGEORGIOU E I, et al. Deep learning-based automated diagnosis for coronary artery disease using SPECTMPI images [J]. Journal of Clinical Medicine, 2022, 11(13): 3918. [77] ZHANG L, WAHLE A, CHEN Z, et al. Predicting locations of high-risk plaques in coronary arteries in patients receiving statin therapy [J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 151-161. [78] OTAKI Y, SINGH A, KAVANAGH P, et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease [J]. JACC : Cardiovascular Imaging, 2022, 15(6): 1091- 1102. [79] BETANCUR J, HU L H, COMMANDEUR F, et al. Deep learning analysis of upright-supine highefficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: Amulticenter study [J]. Journal of Nuclear Medicine, 2019, 60(5): 664-670. [80] JUAREZ-OROZCO L E, KNOL R J J, SANCHEZCATASUS C A, et al. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia [J]. Journal of Nuclear Cardiology, 2020, 27(1): 147-155. [81] COENEN A, KIM Y H, KRUK M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: Result from the MACHINE consortium [J]. Circulation: Cardiovascular Imaging, 2018, 11(6): e007217. [82] CHUN S H, SUH Y J, HAN K, et al. Deep learningbased reconstruction on cardiac CT yields distinct radiomic features compared to iterative and filtered back projection reconstructions [J]. Scientific Reports, 2022, 12: 15171. [83] CHEN Y T, XIE W, ZHANG J W, et al. Myocardial segmentation of cardiac MRI sequences with temporal consistency for coronary artery disease diagnosis [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 804442. [84] BAJAJ R, EGGERMONT J, GRAINGER S J, et al. Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology [J]. Atherosclerosis, 2022, 345: 15-25. [85] JIN X, LI Y Z, YAN F, et al. Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: A multi-center multivendor study [J]. European Radiology, 2022, 32(8):5276-5286. [86] SUINESIAPUTRA A, MAUGER C A, AMBALEVENKATESH B, et al. Deep learning analysis of cardiac MRI in legacy datasets: Multi-ethnic study of atherosclerosis [J]. Frontiers in Cardiovascular Medicine, 2022, 8: 807728. [87] WOJNARSKI C M, ROSELLI E E, IDREES J J, et al. Machine-learning phenotypic classification of bicuspid aortopathy [J]. The Journal of Thoracic and Cardiovascular Surgery, 2018, 155(2): 461-469.e4. [88] NIZAR M, CHAN C, KHALIL A, et al. Real-time detection of aortic valve in echocardiography using convolutional neural networks [J]. Current Medical Imaging Reviews, 2020, 16(5): 584-591. [89] Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias, Atrial Fibrillation Center Union of China. Current knowledge and management of atrial fibrillation: Consensus of Chinese experts 2021 [J]. Chinese Journal of Cardiac Arrhythmias, 2022, 26(1): 15-88 (in Chinese). [90] HUANG C X. Atrial fibrillation, what exactly do we know? [J]. Chinese Journal of Cardiac Arrhythmias, 2020, 24(1): 5-9 (in Chinese). [91] ZAHID S, COCHET H, BOYLE P M, et al. Patientderived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern [J]. Cardiovascular Research, 2016, 110(3): 443-454. [92] ROY A, VARELA M, ASLANIDI O. Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation [J]. Frontiers in Physiology, 2018, 9: 1352. [93] SHI L Z, HENG R, LIU S M, et al. Effect of catheter ablation versus antiarrhythmic drugs on atrial fibrillation: A meta-analysis of randomized controlled trials [J]. Experimental and Therapeutic Medicine, 2015,10(2): 816-822. [94] NEDIOS S, LINDEMANN F, HEIJMAN J, et al. Atrial remodeling and atrial fibrillation recurrence after catheter ablation [J]. Herz,2021, 46(4): 312-317. [95] MARROUCHE N F, WILBER D, HINDRICKS G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation [J]. JAMA, 2014, 311(5): 498. [96] HUANG W, ZHANG J. The ablation procedures and assessment of persistent atrial fibrillation [J]. Chinese Journal of Cardiac Pacing and Electrophysiology, 2021, 35(5): 477-479 (in Chinese). [97] VARELA M, BISBAL F, ZACUR E, et al. Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation [J]. Frontiers in Physiology, 2017, 8: 68. [98] BHALODIA R, GOPARAJU A, SODERGREN T, et al. Deep learning for end-to-end atrial fibrillation recurrence estimation [C]//2018 Computing in Cardiology Conference. Maastricht: IEEE, 2018: 1-4. [99] BOYLE P M, ZGHAIB T, ZAHID S, et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation [J]. Nature Biomedical Engineering, 2019, 3(11): 870-879. [100] SHADE J K, ALI R L, BASILE D, et al. Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation [J]. Circulation Arrhythmia and Electrophysiology, 2020, 13(7): e008213. [101] Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias. 2020 Chinese Society of Pacing and Electrophysiology (CSPE) /Chinese Society of Arrhythmias (CSA) expert consensus statement on ventricular arrhythmias (2016 update) [J]. Chinese Journal of Cardiac Arrhythmias, 2020, 24(3): 188-258 (in Chinese). [102] Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias. The interpretation of 2020 Chinese Society of Pacing and Electrophysiology (CSPE)/Chinese Society of Arrhythmias (CSA) expert consensus statement on ventricular arrhythmias [J]. Chinese Journal of Cardiac Arrhythmias,2020, 24(4): 348-350 (in Chinese). [103] LIN G, NISHIMURA R A, GERSH B J, et al. Device complications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic cardiomyopathy [J]. Heart, 2009, 95(9):709-714. [104] KRAMER C M, BILCHICK K C. Defibrillator or No defibrillator with CRT [J]. Journal of the American College of Cardiology, 2022, 79(7): 679-681. [105] ALIS D, GULER A, YERGIN M, et al. Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI [J]. Diagnostic and Interventional Imaging, 2020, 101(3): 137-146. [106] OKADA DAVID R, JASON M, JONATHAN C, et al. Substrate spatial complexity analysis for the prediction of ventricular arrhythmias in patients with ischemic cardiomyopathy [J]. Circulation Arrhythmia and Electrophysiology, 2020, 13(4): e007975. [107] MERLO M, CANNATA A, GOBBO M, et al. Evolving concepts in dilated cardiomyopathy [J]. European Journal of Heart Failure, 2018, 20(2): 228-239. [108] JEFFERIES J L, TOWBIN J A. Dilated cardiomyopathy [J]. The Lancet, 2010, 375(9716): 752-762. [109] HU R, LI R, YANG P C, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy [J]. Chinese Journal of Magnetic Resonance Imaging, 2022, 13(5): 151-153 (in Chinese). [110] LI S, FENG C, YU K, et al. Critical review of human cardiac magnetic resonance image super resolution reconstruction based on deep learning method [J]. Journal of Image and Graphics, 2022, 27(3): 704-721 (in Chinese). [111] HEIJMAN J, SUTANTO H, CRIJNS H J G M, et al. Computational models of atrial fibrillation: Achievements, challenges, and perspectives for improving clinical care [J]. Cardiovascular Research, 2021, 117(7): 1682-1699. [112] YI P, WANG K, HUANG C, et al. Adversarial attacks in artificial intelligence: A survey [J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1298-1306 (in Chinese). [113] ZIHNI E, MADAI V I, LIVNE M, et al. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome [J]. PLoS One, 2020, 15(4): e0231166. |
[1] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[2] | ZHOU Hanwei1 (周涵巍),ZHU Xinping1 (朱心平),MA Youwei2 (马有为),WANG Kundong1* (王坤东). Low Latency Soft Fiberoptic Choledochoscope Robot Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[3] | XU Yang (徐杨), LI Wanwan∗ (李万万). Time-Resolved Imaging in Short-Wave Infrared Region [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 29-36. |
[4] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[5] | WU Li ∗ (武 力), HUANG Wei (黄 伟), LI Xuetao (李学涛). Personalized Design Method of Bionic Bone Scaffold with Voronoi Spacial Architecture [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 521-527. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||