[1] ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 122-143 (in Chinese).
[2] ZHEN Z Y, JIANG S Y, MA K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering [J]. Aerospace Science and Technology, 2018, 81: 99-107.
[3] BHATIA A K, JU J A, KUMAR A, et al. Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft [J]. International Journal of Adaptive Control and Signal Processing, 2021, 35(5): 769-785.
[4] ZHEN Z Y, TAO G, YU C J, et al. A multivariable adaptive control scheme for automatic carrier landing of UAV [J]. Aerospace Science and Technology, 2019, 92: 714-721.
[5] WU Q L, ZHU Q D, HAN S A. Elman neural networkbased direct lift automatic carrier landing nonsingular terminal sliding mode fault-tolerant control system design [J]. Computational Intelligence and Neuroscience, 2023, 2023: 3560441.
[6] BIAN Q, NENER B, WANG J P, et al. A fitness sharing based ant clustering method for multimodal optimization of the aircraft longitudinal automatic carrier landing system [J]. Aerospace Science and Technology, 2022, 122: 107392.
[7] YANG Z Y, DUAN H B, FAN Y M, et al. Automatic Carrier Landing System multilayer parameter design based on Cauchy Mutation Pigeon-Inspired Optimization [J]. Aerospace Science and Technology, 2018, 79: 518-530.
[8] LI H X, GAO F Y, HU C J, et al. Trajectory track for the landing of carrier aircraft with the forecast on the aircraft carrier deck motion [J]. Mathematical Problems in Engineering, 2021, 2021: 5597878.
[9] DUAN H B, CHEN L, ZENG Z G. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturbances [J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5276-5291.
[10] CHEN C, TAN W Q, QU X J, et al. A fuzzy human pilot model of longitudinal control for a carrier landing task [J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 453-466.
[11] YUE L M, LIU G, HONG G X. Design and simulation of F/A-18A automatic carrier landing guidance controller [C]// AIAA Modeling and Simulation Technologies Conference. Washington: AIAA, 2016: AIAA2016-3527.
[12] YUAN S Z, YANG Y. The design of lateral automatic carrier landing system based on H-infinity control [J]. Ordnance Industry Automation, 2002, 21(6): 1-3 (in Chinese).
[13] ZHANG Y, WU W H, HU Y A, et al. Design of landing trajectory tracking robust controller for carrier-based unmanned aerial vehicle [J]. Control Theory & Applications, 2018, 35(4): 557-565 (in Chinese).
[14] LUNGU M H, CHEN M, V?ILCICˇA (DINU) D A. Backstepping- and sliding mode-based automatic carrier landing system with deck motion estimation and compensation [J]. Aerospace, 2022, 9(11): 644.
[15] LEE S, LEE J, LEE S, et al. Sliding mode guidance and control for UAV carrier landing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 951-966.
[16] DUAN H B, YUAN Y, ZENG Z G. Automatic carrier landing system with fixed time control [J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3586-3600.
[17] ZHANG Z, LI J T, ZOU S T, et al. Kinetic simulation research on aircraft landing and arresting [J]. Computer Simulation, 2015, 32(9): 75-79 (in Chinese).
[18] WANG L P, ZHANG Z, ZHU Q D, et al. Design of automatic carrier-landing controller based on compensating states and dynamic inversion [J]. IEEE Access, 2019, 7: 146939-146952.
[19] GUAN Z Y, MA Y P, ZHENG Z W, et al. Prescribed performance control for automatic carrier landing with disturbance [J]. Nonlinear Dynamics, 2018, 94(2): 1335-1349.
[20] GUAN Z Y, LIU H, ZHENG Z W, et al. Fixedtime control for automatic carrier landing with disturbance [J]. Aerospace Science and Technology, 2021, 108: 106403.
[21] BHATIA A K, JIANG J, ZHEN Z Y, et al. Robust adaptive preview control design for autonomous carrier landing of F/A-18 aircraft [J]. Aircraft Engineering and Aerospace Technology, 2021, 93(4): 642-650.
[22] ZHU Q D, YANG Z B. Dynamic recurrent fuzzy neural network-based adaptive sliding control for longitudinal automatic carrier landing system [J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(1): 53-62.
[23] RICHALET J, RAULT A, TESTUD J L, et al. Model predictive heuristic control [J]. Automatica, 1978, 14(5): 413-428.
[24] KOO S, KIM S, SUK J, et al. Improvement of shipboard landing performance of fixed-wing UAV using model predictive control [J]. International Journal of Control, Automation and Systems, 2018, 16(6): 2697-2708.
[25] CUI K K, HAN W, SUN C, et al. Receding horizon longitudinal control technology for automatic carrier landing with variable reference trajectory based on sliding rate information [J]. IEEE Access, 2020, 8: 214742-214755.
[26] TANG K, WANG W, MENG Y E, et al. Flight control and airwake suppression algorithm for carrier landing based on model predictive control [J]. Transactions of the Institute of Measurement and Control, 2019, 41(8): 2205-2213.
[27] ZHOU Q X, WANG Y, SUN X A. UAV control based on gain adaptive super spiral sliding mode theory [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1453-1460 (in Chinese).
[28] DING M, MENG S, WANG S H, et al. Neuralnetwork-based adaptive feedback linearization control for 6-DOF wave compensation platform [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 165-172(in Chinese).
[29] ZHEN Z Y, YU C J, JIANG S Y, et al. Adaptive super-twisting control for automatic carrier landing of aircraft [J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 984-997.
[30] MENG Y E, WANG W, HAN H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship [J]. Aerospace Science and Technology, 2019, 85: 474-480.
[31] LIU K N, ZHAO W Y, SUN B G, et al. Application of updated Sage–Husa adaptive Kalman filter in the navigation of a translational sprinkler irrigation machine [J]. Water, 2019, 11(6): 1269.
[32] KIM K S, REW K H. Reduced order disturbance observer for discrete-time linear systems [J]. Automatica, 2013, 49(4): 968-975.
[33] GAN W Y, ZHU D Q, HU Z, et al. Model predictive adaptive constraint tracking control for underwater vehicles [J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7829-7840.
[34] CHAKRABORTY A, SEILER P, BALAS G J. Susceptibility of F/A-18 flight controllers to the fallingleaf mode: Nonlinear analysis [J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 73-85.
|