J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (4): 646-655.doi: 10.1007/s12204-024-2713-4
• Special Issue on Multi-Agent Collaborative Perception and Control • Previous Articles Next Articles
DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏)
Accepted:
2023-10-10
Online:
2024-07-14
Published:
2024-07-14
CLC Number:
DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655.
[1] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search [J]. Nature, 2016, 529: 484-489. [2] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge [J]. Nature, 2017, 550: 354-359. [3] BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with large scale deep reinforcement learning [DB/OL]. (2019-12-13). http://arxiv.org/abs/1912.06680 [4] VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning [J]. Nature, 2019, 575: 350-354. [5] KOBER J, BAGNELL J A, PETERS J. Reinforcement learning in robotics: A survey [J]. International Journal of Robotics Research, 2013, 32(11): 1238-1274. [6] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [DB/OL]. (2015-09-09). http://arxiv.org/abs/1509.02971 [7] LI P, RUAN X, ZHU X Q, et al. A regionalization vision navigation method based on deep reinforcement learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 575-585 (in Chinese). [8] SHALEV-SHWARTZ S, SHAMMAH S, SHASHUA A. Safe, multi-agent, reinforcement learning for autonomous driving [DB/OL]. (2016-10-11). https:// arxiv.org/abs/1610.03295 [9] ZHOU Y, ZHOU L, DING J, et al. Power network topology optimization and power flow control based on deep reinforcement learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 7-14 (in Chinese). [10] L¨U Q B, LIU T Y, ZHANG R, et al. Generation approach of human-robot cooperative assembly strategy based on transfer learning [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(5): 602-613. [11] LIU Y, SHEN X, GU X, et al. A dual-system reinforcement learning method for flexible job shop dynamic scheduling [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1262-1275 (in Chinese). [12] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518: 529-533. [13] BUSONIU L, BABUSKA R, DE SCHUTTER B. A comprehensive survey of multiagent reinforcement learning [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(2): 156-172. [14] BUS?ONIU L, BABUˇSKA R, DE SCHUTTER B. Multi-agent reinforcement learning: An overview [M]// Innovations in multi-agent systems and applications - 1. Berlin, Heidelberg: Springer, 2010: 183-221. [15] FOERSTER J N, ASSAEL Y M, DE FREITAS N, et al. Learning to communicate with Deep multi-agent reinforcement learning [C]//30th International Conference on Neural Information Processing Systems. Barcelona: NIPS, 2016: 2145-2153. [16] JIANG J C, LU Z Q. Learning attentional communication for multi-agent cooperation [C]//32nd International Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2018: 7265-7275. [17] SUKHBAATAR S, SZLAM A, FERGUS R. Learning multiagent communication with backpropagation [C]//30th International Conference on Neural Information Processing Systems. Barcelona: NIPS, 2016: 2252-2260. [18] PENG P, WEN Y, YANG Y D, et al. Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games [DB/OL]. (2017-03-29). https://arxiv.org/abs/1703.10069 [19] JIANG J, DUN C, HUANG T, et al. Graph convolutional reinforcement learning [J]. (2018-10-22). https://arxiv.org/abs/1810.09202 [20] SINGH A, JAIN T, SUKHBAATAR S. Learning when to communicate at scale in multiagent cooperative and competitive tasks [DB/OL]. (2018-12-23). http://arxiv.org/abs/1812.09755 [21] KIM D, MOON S, HOSTALLERO D, et al. Learning to schedule communication in multiagent reinforcement learning [DB/OL]. (2019-02-09). http://arxiv.org/abs/1902.01554 [22] DAS A, GERVET T, ROMOFF J, et al. TarMAC: Targeted multi-agent communication [C]// 36th International Conference on Machine Learning. Long Beach: PMLR 97, 2019: 1538-1546. [23] WANG Y F, ZHONG F W, XU J, et al. ToM2C: Target-oriented multi-agent communication and cooperation with theory of mind [DB/OL]. (2021-10-15). https://arxiv.org/abs/2111.09189 [24] SUNEHAG P, LEVER G, GRUSLYS A, et al. Value-decomposition networks for cooperative multi-agent learning [DB/OL]. (2017-06-16). http://arxiv.org/abs/1706.05296 [25] WEI E M, WICKE D, FREELAN D, et al. Multiagent soft Q-learning [DB/OL]. (2018-04-25). https://arxiv.org/abs/1804.09817 [26] SON K, KIM D, KANG W J, et al. QTRAN: Learning to factorize with transformation for cooperative multiagent reinforcement learning [DB/OL]. (2019-05-14). http://arxiv.org/abs/1905.05408 [27] WANG J H, REN Z Z, LIU T, et al. QPLEX: Duplex dueling multi-agent Q-learning [DB/OL]. (2020-08-03). https://arxiv.org/abs/2008.01062 [28] TABISH R, MIKAYEL S, SCHROEDER D W C, et al. Monotonic value function factorisation for deep multiagent reinforcement learning [J]. Journal of Machine Learning Research, 2020, 21(1): 7234-7284. [29] YANG Y D, WEN Y, CHEN L H, et al. Multi-agent determinantal Q-learning [C]//37th International Conference on Machine Learning. Vienna: PMLR 119, 2020: 10757-10766. [30] FU W, YU C, XU Z L, et al. Revisiting some common practices in cooperative multi-agent reinforcement learning [DB/OL]. (2022-06-15). http://arxiv.org/abs/2206.07505 [31] LONG Q, ZHOU Z H, GUPTA A, et al. Evolutionary population curriculum for scaling multiagent reinforcement learning [DB/OL]. (2020-03-23). https://arxiv.org/abs/2003.10423 [32] WANG W X, YANG T P, LIU Y, et al. From few to more: Large-scale dynamic multiagent curriculum learning [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 7293-7300. [33] FOERSTER J, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2974-2982. [34] LOWE R, WU Y, TAMAR A, et al. Multi-agent actorcritic for mixed cooperative-competitive environments [C]//31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 6382-6393. [35] MAHAJAN A, RASHID T, SAMVELYAN M, et al. MAVEN: Multi-agent variational exploration [DB/OL]. (2019-10-16). http://arxiv.org/abs/1910.07483 |
[1] | Wang Wei, Zhou Cheng, Jiang Jinlei, Cui Xinyuan, Yan Guozheng, Cui Daxiang. Optimization of Wireless Power Receiving Coil for Near-Infrared Capsule Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | Li Tao, Zhao Zhigang, Zhu Mingtong, Zhao Xiangtang. Cable Vector Collision Detection Algorithm for Multi-Robot Collaborative Towing System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | Fu Yujia, Zhang Jian, Zhou Liping, Liu Yuanzhi, Qin Minghui, Zhao Hui, Tao Wei. Passive Binocular Optical Motion Capture Technology Under Complex Illumination [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | Nie Wei, Liang Xinwu. Efficient Fully Convolutional Network and Optimization Approach for Robotic Grasping Detection Based on RGB-D Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | ZHOU Hanwei1 (周涵巍),ZHU Xinping1 (朱心平),MA Youwei2 (马有为),WANG Kundong1* (王坤东). Low Latency Soft Fiberoptic Choledochoscope Robot Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | HE Guisong (贺贵松), HUANG Xuegong* (黄学功),LI Feng(李峰). Coordination Design of a Power-Assisted Ankle Exoskeleton Robot Based on Active-Passive Combined Drive [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | LIU Yuesheng (刘月笙), HE Ning∗ (贺宁), HE Lile (贺利乐), ZHANG Yiwen (张译文), XI Kun (习坤), ZHANG Mengrui (张梦芮). Self-Tuning of MPC Controller for Mobile Robot Path Tracking Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | DU Haikuo1,2 (杜海阔), GUO Zhengyu3,4(郭正玉), ZHANG Lulu1,2(章露露), CAI Yunze1,2∗ (蔡云泽). Multi-Objective Loosely Synchronized Search for Multi-Objective Multi-Agent Path Finding with Asynchronous Actions [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[11] | DONG Dejin1,2 (董德金), DONG Shiyin3 (董诗音), ZHANG Lulu1,2 (章露露), CAI Yunze1,2∗ (蔡云泽). Multi-AGVs Scheduling with Vehicle Conflict Consideration in Ship Outfitting Items Warehouse [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[12] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[13] | XU Yaru(徐亚茹), LI Kehong(李克鸿), SHANG Xinna(商新娜), JIN Xiaoming(金晓明), LIU Rong(刘荣), ZHANG Jiancheng(张建成). Establishment of Constraint Relation of Robot Dynamics Equation Based on Kinematic Influence Coefficients Method [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[14] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[15] | LI Ru1 (李茹), CHEN Fang2 (陈方), YU Wenwei3 (俞文伟), IGARASH Tatsuo3,4, SHU Xiongpeng1 (舒雄鹏), XIE Le1,5,6∗ (谢叻). A Novel Cable-Driven Soft Robot for Surgery [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 60-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||