J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (5): 569-576.doi: 10.1007/s12204-022-2436-3

• Machinery and Instrument • Previous Articles    

Measuring Transverse Relaxation Time of Xenon Atoms Based on Single Beam of Laser in Nuclear Magnetic Resonance Gyroscope

核磁共振陀螺仪中基于单束激光的氙原子横向弛豫时间测量

ZHONG Guochen1(钟国宸),LIU Hual*(刘华), GUo Yang1(郭阳),LI Shaoliang2(李绍良),ZHAO Wanliang2(赵万良),CHENG Yuxiang2(成宇翔)   

  1. (1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Aerospace Control Technology Institute, Shanghai Academy of Spaceflight Technology, Shanghai 201109, China)
  2. (上海交通大学 电子信息与电气工程学院,上海200240;上海航天技术研究院 上海航天控制技术研究所,上海201109)
  • Accepted:2020-11-19 Online:2023-09-28 Published:2023-10-20

Abstract: Nuclear magnetic resonance gyroscope (NMRG) has the characteristics of high precision and miniaturization, and is one of the main applications of quantum technology in the field of navigation. The transverse relaxation time (T2) of the xenon nuclear spin in the atomic cell of the NMRG directly affects the angular random walk of the gyro. Accurate and rapid measurement of T2 is conducive to further improvement of gyroscope. At present, for the measurement of T2, the schemes of two orthogonal lasers for pumping and detecting are usually used. By applying two fast-switching orthogonal static magnetic fields and a single beam of circularly polarized laser with corresponding wavelength to pump the atomic cell, the xenon nuclear macroscopic magnetic moment Larmor precession is generated. The cesium atoms parametric magnetometer in cell is formed to detect the free induction decay signal generated by nuclear spin precession of xenon atoms. The measurement of T2 by a single laser simplifies the measurement equipment compared with traditional method with two lasers. The experimental results show that the T2 of xenon atoms is more than 10 s, and the effects of temperature are studied, which lay the foundation for the subsequent improvement of gyro performance.

Key words: nuclear magnetic resonance gyroscope (NMRG), transverse relaxation time, magnetometer, free_x0002_induction decay

摘要: 核磁共振陀螺仪(NMRG)具有高精度和小型化的特点,是量子技术在导航领域的主要应用之一。NMRG原子池中氙核自旋的横向弛豫时间(T2)直接影响陀螺的角度随机游走。准确、快速地测量T2有利于陀螺仪的进一步改进。对于T2的测量,目前通常采用抽运和探测正交激光器的这两种方案。通过施加两个快速切换正交静磁场和一束相应波长的圆偏振激光抽运原子池,产生氙核宏观磁矩拉莫尔进动。为了探测氙原子核自旋进动产生的自由感应衰变信号,在电池中形成铯原子参数磁强计。与传统的双激光器测量方法相比,单激光器测量T2简化了测量设备。实验结果表明,氙原子的T2大于10 s,并进行了温度影响的研究,这些为后续陀螺性能的提高奠定了基础。

关键词: 核磁共振陀螺仪,横向弛豫时间,磁强计,自由感应衰减

CLC Number: