J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 52-60.doi: 10.1007/s12204-023-2567-1

• Intelligent Transportation Systems • Previous Articles     Next Articles

Spatial Temporal Correlation 3D Vehicle Detection and Tracking System with Multiple Surveillance Cameras

基于多视角道路相机的时空关联三维车辆检测与跟踪系统

XUE Weipeng (薛炜彭), WU Minghu (吴明虎), WANG Lin∗ (王 琳)   

  1. (Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
  2. (上海交通大学 电子信息与电器工程学院 自动化系,上海200240)
  • Received:2022-04-10 Online:2023-01-28 Published:2023-02-13

Abstract: Compared to 3D object detection using a single camera, multiple cameras can overcome some limitations on field-of-view, occlusion, and low detection confidence. This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information. The framework consists of a 3D vehicle detection model, cooperatively spatial-temporal relation scheme, and heuristic camera constellation method. Specifically, the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections. The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect. The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability, where the cooperative perception can recall more than 66% of the trajectory instead of 11% for single-point sensing. This could contribute to full-range surveillance for intelligent transportation systems.

Key words: multi-object tracking, 3D detection, multiple sensors, cooperative perception, spatial-temporal correlation, intelligent transportation system

摘要: 相较于单个相机的三维目标检测,使用多个不同视角的相机可以克服一些缺陷,例如感知范围小、视野遮挡以及检测置信度低。本文借助多个道路监控摄像头提出了一种利用时空关联信息的联合三维目标检测与跟踪的框架,这一框架包含三维车辆检测模型、时空关联算法以及启发式的多相机安装位姿选择方法。具体来讲,提出的跨相机关联策略结合了多个相机和检测到的多个目标之间的几何关系,时空关联算法用于在某一时刻下关联不同视角的相机视野下的三维车辆完成目标检测,并且在不同时刻间关联相同车辆从而实现车辆的跟踪。我们使用仿真生成的数据集评估框架的可行性,实验结果表明联合检测达到了66%的轨迹召回率,超过了单视角检测的11%的召回率,这一框架将有助于推动智能交通系统的全覆盖。

关键词: 多目标跟踪,三维目标检测,多传感器,联合检测,时间-空间相关性,智能交通系统

CLC Number: