[1] |
FENGW, ZHANG J F. Mean square stabilization control of switched systems with stochastic disturbances [C]//43rd IEEE Conference on Decision and Control(CDC). Nassau, Bahamas: IEEE, 2004: 3714-3719.
|
[2] |
BRANICKY M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Transactions on Automatic Control, 1998,43(4): 475-482.
|
[3] |
CHENG D Z, GUO L, LIN Y D, et al. Stabilization of switched linear systems [J]. IEEE Transactions on Automatic Control, 2005, 50(5): 661-666.
|
[4] |
HESPANHA J P, MORSE A S. Stability of switched systems with average dwell-time [C]//Proceedings of the 38th IEEE Conference on Decision and Control.Phoenix. AZ, USA: IEEE, 2002: 2655-2660.
|
[5] |
LIBERZON D, HESPANHA J P, MORSE A S. Stability of switched systems: a Lie-algebraic condition [J].Systems & Control Letters, 1999, 37(3): 117-122.
|
[6] |
SHORTEN R N, NARENDRA K S. On the stability and existence of common Lyapunov functions for stable linear switching systems [C]//Proceedings of the 37th IEEE Conference on Decision and Control.Tampa, FL, USA: IEEE, 1998: 3723-3724.
|
[7] |
DAAFOUZ J, RIEDINGER P, IUNG C. Stability analysis and control synthesis for switched systems:a switched Lyapunov function approach [J]. IEEE Transactions on Automatic Control, 2002, 47(11):1883-1887.
|
[8] |
EL-FARRA N H, CHRISTOFIDES P D. Switching and feedback laws for control of constrained switched nonlinear systems [M]//Hybrid systems: Computation and control. Berlin, Heidelberg: Springer, 2002, 164-178.
|
[9] |
FERRON K E. Quadratic stabilizability of switched systems via state and output feedback [R]. Cambridge,USA: MIT Center for Intelligent Control Systems,1996: 1-13.
|
[10] |
GIUA A, SEATZU C, VAN DER MEE C. Optimal control of switched autonomous linear systems[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001:2472-2477.
|
[11] |
SKAFIDAS E, EVANS R J, MAREELS I M Y, et al. Optimal controller switching for stochastic systems[M]//Hyrbrid system V. Berlin, Heidelberg: Springer,1999: 341-355.
|
[12] |
ZHANG L X, BOUKAS E K, BARON L. Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities [C]//47th IEEE Conference on Decision and Control. Cancun,Mexico: IEEE, 2008: 1054-1059.
|
[13] |
BOLZERN P, COLANERI P, DE NICOLAO G. Almost sure stability of continuous-time Markov jump linear systems: A randomized approach [J]. IFAC Proceedings Volumes, 2005, 38(1): 7-12.
|
[14] |
HUANG J, SHI Y, ZHANG X. Active fault tolerant control systems by the semi-Markov model approach [J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(9): 833-847.
|
[15] |
BOLZERN P, COLANERI P, DE NICOLAO G.Stochastic stability of positive Markov jump linear systems[J]. Automatica, 2014, 50(4): 1181-1187.
|
[16] |
XIAO N, XIE L H, FU M Y. Stabilization of Markov jump linear systems using quantized state feedback [J].Automatica, 2010, 46(10): 1696-1702.
|
[17] |
FANG Y G, LOPARO K A. Stabilization of continuous-time jump linear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1590-1603.
|
[18] |
SONG Y, DONG H, YANG T C, et al. Almost sure stability of discrete-time Markov jump linear systems[J]. IET Control Theory & Applications, 2014, 8(11):901-906.
|
[19] |
DOCOSTAOL V, MARQUESR P, FRAGOSOMD.Discrete-time Markov jump linear systems [M]. London:Springer, 2005.
|
[20] |
DORATO P. Short time stability in linear time-varying systems [C]//Proceedings of the IRE International Convention Record. New York: Polytechnic Institute of Brooklyn, 1961: 83-87.
|
[21] |
WEISS L, INFANTE E F. Finite time stability under perturbing forces and on product spaces [J]. IEEE Transactions on Automatic Control, 1967, 12(1): 54-59.
|
[22] |
DULLERUD G E, LALL S G. Analysis and synthesis tools for time-varying systems [C]//Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, CA, USA: IEEE, 1997: 4543-4548.
|