[1] |
FRYZLEWICZ P, NASON G P. A Haar-Fisz algorithmfor poisson intensity estimation [J]. Journal ofComputational & Graphical Statistics, 2004, 13(3):621-638.
|
[2] |
DEY N, BLANC-FERAUD L, ZIMMER C, et al.Richardson-Lucy algorithm with total variation regularizationfor 3D confocal microscope deconvolution[J]. Microscopy Research & Technique, 2006, 69(4):260-266.
|
[3] |
M¨AKITALO M, FOI A. Optimal inversion of theAnscombe transformation in low-count Poisson imagedenoising [J]. IEEE Transactions on Image Processing,2011, 20(1): 99-109.
|
[4] |
BUADES A, COLL B, MOREL J M. A review of imagedenoising algorithms, with a new one [J]. SIAMJournal on Multiscale Modeling & Simulation, 2005,4(2): 490-530.
|
[5] |
FENG J Z, SONG L, HUO X M, et al. An optimizedpixel-wise weighting approach for patch-based imagedenoising [J]. IEEE Signal Processing Letters, 2014,22(1): 115-119.
|
[6] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoisingby sparse 3D transform-domain collaborativefiltering [J]. IEEE Transactions on Image Processing,2007, 16(8): 2080-2095.
|
[7] |
DELEDALLE C A, LTCI C, SALMON J, et al. Imagedenoising with patch based PCA: Local versus global[C]//Proceedings of the 22nd British Machine VisionConference. Dundee: BMVA Press, 2011: 1-10.
|
[8] |
SALMON J, HARMANY Z, DELEDALLE C A, et al.Poisson noise reduction with non-local PCA [J]. Journalof Mathematical Imaging & Vision, 2014, 48(2):279-294.
|
[9] |
GIRYES R, ELAD M. Sparsity-based poisson denoisingwith dictionary learning [J]. IEEE Transactions onImage Processing, 2014, 23(12): 5057-5069.
|
[10] |
ZHANG X, BURGER M, BRESSON X, et al. Bregmanizednonlocal regularization for deconvolution andsparse reconstruction [J]. SIAM Journal on ImagingSciences, 2010, 3(3): 253-276.
|
[11] |
LANDI G, PICCOLOMINI E L. NPTool: A Matlabsoftware for nonnegative image restoration withNewton projection methods [J]. Numerical Algorithms,2013, 62(3): 487-504.
|
[12] |
LANDI G, PICCOLOMINI E L. An efficient methodfor nonnegatively constrained total variation-based denoisingof medical images corrupted by poisson noise[J]. Computerized Medical Imaging & Graphics, 2012,36(1): 38-46.
|
[13] |
ZHANG Z R, HUANG L L, FEI X, et al. Image poissondenoising model and algorithm based on nonlocal TVregularization [J]. Journal of System Simulation, 2014,26(9): 2010-2015 (in Chinese).
|
[14] |
CHAN T F, SUNG H K, SHEN J. Euler’s elastica andcurvature based inpaintings [J]. SIAM Journal of AppliedMathematics, 2002, 63(2): 564-592.
|
[15] |
TAI X C, HAHN J, CHUNG G J. A fast algorithmfor Euler’s elastica model using augmented Lagrangianmethod [J]. SIAM Journal on Imaging Sciences, 2011,4(1): 313-344.
|
[16] |
DUAN Y P, WANG Y, HAHN J. A fast augmentedLagrangian method for Euler’s elastica models [J]. NumericalMathematics Theory Methods & Applications,2013, 6(1): 47-71.
|
[17] |
ECKSTEIN J, BERTSEKAS D P. On the Douglas-Rachford splitting method and the proximal point algorithmfor maximal monotone operators [J]. MathematicalProgramming, 1992, 55: 293-318.
|