[1] Chen J J, Deng H, Wei M. Hydrothermal synthesis and optical properties of ZnO single-crystal hexagonal microtubes [J]. Materials Science and Engineering B, 2009, 163: 157-160.[2] Thongtem T, Phuruangrat A, Thongtem S. Characterization of nanostructured ZnO produced by microwave irradiation [J]. Ceramics International, 2010, 36: 257-262.[3] Chen J, Lei W, Chai W Q, et al. High field emission enhancement of ZnO-nanorods via hydrothermal synthesis [J]. Solid-State Electronics, 2008, 52: 294-298.[4] Hu X L, Zhu Y J, Wang S W. Sonochemical and microwave-assisted synthesis of linked singlecrystalline ZnO rods [J]. Materials Chemistry and Physics, 2004, 88: 421-426.[5] Wang B G, Callahan M J, Xu C C, et al. Hydrothermal growth and characterization of indiumdoped-conducting ZnO crystals [J]. Journal of Crystal Growth, 2007, 304: 73-79.[6] Zhang Z Q, Mu J. Hydrothermal synthesis of ZnO nanobundles controlled by PEO-PPO-PEO block copolymers [J]. Journal of Colloid and Interface Science, 2007, 307: 79-82.[7] Pal E, Hornok V, Oszk′o A, et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indiumdoped ZnO structures [J]. Colloids and Surfaces A, 2009, 340: 1-9.[8] Akhtar M S, Khan M A, Jeon M S, et al. Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dyesensitized solar cells [J]. Electrochimica Acta, 2008, 53: 7869-7874.[9] Pei L Z, Zhao H S, Tan W, et al. Hydrothermal oxidization preparation of ZnO nanorods on zinc substrate [J]. Physica E, 2010, 42: 1333-1337.[10] Krishnakumar T, Jayaprakash R, Pinna N, et al. CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route [J]. Sensors and Actuators B, 2009, 143: 198-204.[11] Liu J S, Cao J M, Li Z Q, et al. A simple microwave-assisted decomposing route for synthesis of ZnO nanorods in the presence of PEG400 [J]. Materials Letters, 2007, 61: 4409-4411.[12] Erten-Ela S, Cogal S, Icli S. Conventional and microwave-assisted synthesis of ZnO nanorods and effects of PEG400 as a surfactant on the morphology [J]. Inorganica Chimica Acta, 2009, 362: 1855-1858.[13] Komarneni S, Katsuki H. Microwave-hydrothermal synthesis of barium titanate under stirring condition [J]. Ceramics International, 2010, 36: 1165-1169.[14] Chen Z Q, Li W K, Zeng W J, et al. Microwave hydrothermal synthesis of nanocrystalline rutile [J]. Materials Letters, 2008, 62: 4343-4344.[15] Krishna M, Komarneni S. Conventional- vs microwave-hydrothermal synthesis of tin oxide, SnO2 nanoparticles [J]. Ceramics International, 2009, 35: 3375-3379.[16] Guo L T, Luo H J, Gao J Q, et al. Microwave hydrothermal synthesis of barium titanate powders [J]. Materials Letters, 2006, 60: 3011-3014. |