[1] SEIF H G, HU X L. Autonomous driving
in the iCity—HD maps as
a key challenge
of the automotive industry
[J]. Engineering, 2016, 2(2): 159-162.
[2] MA W C, URTASUN R, TARTAVULL I, et al. Exploiting sparse semantic HD maps for self-driving vehicle localization
[C]//2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Macau: IEEE,
2019: 5304-5311.
[3] CHEN D, ZHOU B, KOLTUN V, et al. Learning by Cheating[C]// 3rd Conference on Robot Learning. Osakan:
PMLR, 2019: 66-75.
[4] CUI H G,
RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions
for autonomous driving using deep convolutional
networks [C]//2019 International
Conference on Robotics and Automation. Montreal: IEEE, 2019: 2090-2096.
[5] HONG J, SAPP B, PHILBIN J. Rules of the road:
Predicting driving behavior with a convolutional model of semantic interactions [C]//2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:
IEEE, 2019: 8446-8454.
[6] BASTANI F, HE S T, ABBAR S, et al. RoadTracer: automatic extraction of road networks from aerial images [C]//2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Salt Lake City: IEEE, 2018: 4720-4728.
[7] HOMAYOUNFAR N, MA W C, LAKSHMIKANTH S K, et al. Hierarchical recurrent attention networks for structured online maps [C]//2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Salt Lake City: IEEE, 2018: 3417-3426.
[8] XU Z H, SUN Y X, LIU M. Topo-boundary: A benchmark dataset on topological road-boundary detection using aerial images for autonomous driving [J]. IEEE Robotics and Automation Letters, 2021, 6(4):
7248-7255.
[9] LIANG J, HOMAYOUNFAR N, MA W C, et al. Convolutional recurrent network for road boundary extraction
[C]//2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9504-9513.
[10] XU Z H, SUN Y X, LIU M. iCurb: Imitation learning-based detection of road curbs using aerial images for autonomous driving [J]. IEEE Robotics and Automation Letters,
2021, 6(2): 1097-1104.
[11] RODDICK T, CIPOLLA R. Predicting semantic map representations
from
images
using
pyramid
occupancy
networks
[C]//2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Seattle: IEEE, 2020: 11135-11144.
[12] YANG B, LIANG M, URTASUN R. HDNET: Exploiting HD maps for 3D object detection [DB/OL]. (2020-12-21). https://arxiv.org/abs/2012.11704
[13] LI Q,
WANG Y, WANG Y L, et al. HDMapNet: an online HD map construction
and evaluation framework [C]//2022
International Conference on Robotics and Automation. Philadelphia: IEEE,
2022: 4628-4634.
[14] XU H Q, YANG M, DENG L
Y, et al. Semantic segmentation-based road marking detection using around view monitoring system [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(6): 833-843.
[15] CAN Y B, LINIGER A, PAUDEL D P, et al. Structured bird’s-eye-view traffic scene understanding
from onboard images [C]//2021
IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021:
15641-15650.
[16] CAN Y B, LINIGER A, PAUDEL D P, et al. Topology preserving local road network estimation
from single onboard camera image [C]//2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans:
IEEE, 2022: 17242-17251.
[17] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous
separable convolution for semantic image segmentation[M]//European conference
on computer vision. Cham: Springer, 2018:
833-851.
[18] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding
[C]//2016 IEEE Conference on Computer
Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223.
[19] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection
[C]//2017 IEEE Conference on Computer
Vision and Pattern Recognition. Honolulu: IEEE, 2017:
936-944.
[20] MALLOT H A, BÜLTHOFF H H, LITTLE
J J, et al. Inverse perspective mapping
simplifies optical flow computation and obstacle detection [J]. Biological Cybernetics, 1991, 64(3):
177-185.
[21] ZHU X, SU W, LU L, et al. Deformable detr: Deformable transformers
for end-to-end object detection[C]// 2021
7th International Conference on Learning Representations. Online: ICLR,
2021:1-16.
[22] CAESAR H, BANKITI
V, LANG A H, et al. nuScenes: A multimodal dataset for autonomous driving [C]//2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Seattle: IEEE, 2020: 11618-11628.
[23] LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization[C]// 2019 7th International Conference on
Learning Representations. New Orleans: ICLR, 2019:1-19.
[24] ACUNA D, LING H,
KAR A, et al. Efficient interactive annotation of
segmentation datasets with polygon-RNN [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Salt Lake City: IEEE, 2018: 859-868.
[25] KO Y, LEE Y, AZAM S, et al. Key points estimation and point instance segmentation approach for lane detection [J]. IEEE
Transactions on Intelligent Transportation Systems, 2022, 23(7): 8949-8958.
|