[1] SACHYANI KENETH E, KAMYSHNY A, TOTARO M, et al. 3D printing materials for soft robotics [J]. Advanced Materials, 2021, 33(19): 2003387.
[2] CHEN Y X, DENG Z R, OUYANG R, et al. 3D printed stretchable smart fibers and textiles for self-powered eskin [J]. Nano Energy, 2021, 84: 105866.
[3] DAVOODI E, MONTAZERIAN H, HAGHNIAZ R, et al. 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring [J]. ACS Nano, 2020, 14(2): 1520-1532.
[4] O’DRISCOLL D P, MCMAHON S, GARCIA J, et al. Printable G-putty for frequency and rateindependent, high-performance strain sensors [J]. Small, 2021, 17(23): 2006542.
[5] HUA Q L, SUN J L, LIU H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing [J]. Nature Communications, 2018, 9: 244.
[6] KIM S J, SONG W, YI Y, et al. High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3921-3928.
[7] KOU H R, ZHANG L, TAN Q L, et al. Wireless flexible pressure sensor based on micro-patterned graphene/PDMS composite [J]. Sensors and Actuators A: Physical, 2018, 277: 150-156.
[8] NIU D, JIANG W T, YE G Y, et al. Grapheneelastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection [J]. Materials Research Bulletin, 2018, 102: 92-99.
[9] HEO J S, SOLEYMANPOUR R, LAM J, et al. Widerange motion recognition through insole sensor using multi-walled carbon nanotubes and polydimethylsiloxane composites [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(2): 581-588.
[10] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887):385-388.
[11] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J]. Nature, 2005, 438(7065): 201-204.
[12] WALLIN T J, PIKUL J, SHEPHERD R F. 3D printing of soft robotic systems [J]. Nature Reviews Materials, 2018, 3(6): 84-100.
[13] GUO S Z, QIU K Y, MENG F B, et al. 3D printed stretchable tactile sensors [J]. Advanced Materials, 2017, 29(27): 1701218.
[14] WANG H R, GUO K, ZHANG L M, et al. Valvebased consecutive bioprinting method for multimaterial tissue-like constructs with controllable interfaces [J]. Biofabrication, 2021, 13(3): 035001.
[15] GUO K, WANG H R, LI S J, et al. Collagenbased thiol–norbornene photoclick bio-ink with excellent bioactivity and printability [J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7037-7050.
[16] ZHANG L M, ZHANG H, WANG H R, et al. Fabrication of multi-channel nerve guidance conduits containing schwann cells based on multi-material 3D bioprinting [J]. 3D Printing and Additive Manufacturing, 2023, 10(5): 1046-1054.
[17] ROH S, PAREKH D P, BHARTI B, et al. 3D printing by multiphase silicone water capillary inks [J]. Advanced Materials, 2017, 29(30): 1701554.
[18] JI Z Y, JIANG D, ZHANG X Q, et al. Facile photo and thermal two-stage curing for high-performance 3D printing of poly(dimethylsiloxane) [J]. Macromolecular Rapid Communications, 2020, 41(10): 2000064.
[19] WANG H H, CEN Y M, ZENG X Q. Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin [J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28538-28545.
[20] NAFICY S, JALILI R, ABOUTALEBI S H, et al. Graphene oxide dispersions: Tuning rheology to enable fabrication [J]. Materials Horizons, 2014, 1(3): 326-331.
[21] HUANG K, DONG S M, YANG J S, et al. Threedimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity [J]. Carbon, 2019, 143: 63-72.
[22] CAO K L, WU M A, BAI J B, et al. Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range [J]. Advanced Functional Materials, 2022, 32(28): 2202360.
[23] YUK H, ZHAO X H. 3D printing: A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks [J]. Advanced Materials, 2018, 30(6): 1704028.
[24] LIU H, XUE R Y, HU J Q, et al. Systematic study on the mechanical and electric behaviors of the nonbuckling interconnect design of stretchable electronics [J]. Science China Physics, Mechanics & Astronomy, 2018, 61(11): 114611.
[25] FAN J A, YEO W H, SU Y W, et al. Fractal design concepts for stretchable electronics [J]. Nature Communications, 2014, 5: 3266.
[26] DUAN L Y, D’HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application [J]. Progress in Materials Science, 2020, 114: 100617.
[27] YOU X A, YANG J S, WANG M M, et al. Novel graphene planar architecture with ultrahigh stretchability and sensitivity [J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18913-18923.
[28] JEONG Y R, PARK H, JIN S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam [J]. Advanced Functional Materials, 2015, 25(27): 4228-4236.
[29] TEWARI A, GANDLA S, BOHM S, et al. Highly exfoliated MWNT–rGO ink wrapped polyurethane foam for piezoresistive pressure sensor applications [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5185-5195.
|