[1] ABUGATTAS C, AGUIRRE A, CASTILLO E, et al.Numerical study of bifurcation blood flows using threedifferent non-Newtonian constitutive models [J]. Applied Mathematical Modelling, 2020, 88: 529-549.
[2] LIU Y, SUN A. Influence of forward acceleration onhemodynamic characteristics of carotid arteries: A numerical simulation [J]. Journal of Beijing Universityof Aeronautics and Astronautics, 2019, 45(3): 493-498(in Chinese).
[3] LU Y, ZHANG S S. Rheological characteristics analysis of blood flow at the site of vascular lesion based onCFD [J]. Journal of Northeastern University (NaturalScience), 2020, 41(1): 148-152 (in Chinese).
[4] MORALES H G, LARRABIDE I, GEERS A J, et al.Newtonian and non-Newtonian blood flow in coiledcerebral aneurysms [J]. Journal of Biomechanics, 2013,46(13): 2158-2164.
[5] SUZUKI T, TAKAO H, SUZUKI T, et al. Variabilityof hemodynamic parameters using the common viscosity assumption in a computational fluid dynamicsanalysis of intracranial aneurysms [J]. Technology andHealth Care, 2017, 25(1): 37-47.
[6] ABBASIAN M, SHAMS M, VALIZADEH Z, et al. Effects of different non-Newtonian models on unsteadyblood flow hemodynamics in patient-specific arterialand Programs in Biomedicine, 2020, 186: 105185.
[7] OU C B, HUANG W, YUEN M M F, et al. Hemodynamic modeling of leukocyte and erythrocyte transport and interactions in intracranial aneurysms bya multiphase approach [J]. Journal of Biomechanics,2016, 49(14): 3476-3484.
[8] OSTROWSKI Z, MELKA B, ADAMCZYK W, et al.CFD analysis of multiphase blood flow within aortaand its thoracic branches of patient with coarctationof aorta using multiphase Euler - Euler approach [J].Journal of Physics: Conference Series, 2016, 745:032112.
[9] ARIBAS E, CELEBI M S. A thermal based RBC aggregation model for two-phase blood flow [J]. KoreaAustralia Rheology Journal, 2020, 32(2): 121-136.
[10] XIE H W, ZHANG Y. The effect of red blood cells onblood heat transfer [J]. International Journal of Heatand Mass Transfer, 2017, 113: 840-849.
[11] ZHANG W M, LIU J L, YAN Q, et al. Computationalhaemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow [J]. InteractiveCardioVascular and Thoracic Surgery, 2016, 23(4):519-525.
[12] CONG M, ZHAO H, XU X, et al. Hemodynamic analysis on anomalous origin of the right coronary arteryfrom the left coronary artery sinus [J]. Journal of Medical Biomechanics, 2020, 35(3): 284-288 (in Chinese).
[13] QIAO Y Q, FU R C, ZHANG L H. Effects of sandtherapy on hemodynamics in the femoral artery bifurcation at different degrees of stenosis [J]. ChineseJournal of Tissue Engineering Research, 2020, 24(8):1218-1224 (in Chinese).
[14] STARY H C, CHANDLER A B, DINSMORE R E, etal. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis.A report from the Committee on Vascular Lesions ofthe Council on Arteriosclerosis, American Heart Association [J]. Arteriosclerosis, Thrombosis, and VascularBiology, 1995, 15(9): 1512-1531.
[15] XIONG J, LUO W, LI D, et al. Hemodynamic studyon non-Newtonian properties of Fontan procedure [J].Journal of Medical Biomechanics, 2021, 36(6): 862-868 (in Chinese).
[16] MENG H, TUTINO V M, XIANG J, et al. HighWSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth,and rupture: Toward a unifying hypothesis [J]. AJNRAmerican Journal of Neuroradiology, 2014, 35(7):1254-1262.
[17] TANG D L, YANG C, MONDAL S, et al. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: In vivoMRI-based 2D/3D FSI models [J]. Journal of Biomechanics, 2008, 41(4): 727-736.
[18] GALLO D, BIJARI P B, MORBIDUCCI U, et al.Segment-specific associations between local haemodynamic and imaging markers of early atherosclerosisat the carotid artery: An in vivo human study [J].Journal of the Royal Society, Interface, 2018, 15(147):20180352.
[19] CHAPPELL D C, VARNER S E, NEREM R M, et al.Oscillatory shear stress stimulates adhesion moleculeexpression in cultured human endothelium [J]. Circulation Research, 1998, 82(5): 532-539.
[20] RIEDER M J, CARMONA R, KRIEGER J E, et al.Suppression of angiotensin-converting enzyme expression and activity by shear stress [J]. Circulation Research, 1997, 80(3): 312-319.
[21] BALLYK P D, STEINMAN D A, ETHIER C R. Simulation of non-Newtonian blood flow in an end-to-sideanastomosis [J]. Biorheology, 1994, 31(5): 565-586.
[22] FROLOV S V, SINDEEV S V, LIEPSCH D, et al.Newtonian and non-Newtonian blood flow at a 90?-bifurcation of the cerebral artery: A comparative studyof fluid viscosity models [J]. Journal of Mechanics inMedicine and Biology, 2018, 18(5): 1850043.
[23] AMIRI M H, KESHAVARZI A, KARIMIPOURA, et al. A 3-D numerical simulation of nonNewtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: Investigating Newtonian/non-Newtonian flow and its effects onelastic vessel walls [J]. Heat and Mass Transfer, 2019,55(7): 2037-2047.
[24] MORAVIA A, SIMO?NS S, EL HAJEM M, et al. Invitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid [J].Journal of Biomechanics, 2022, 130: 110899.
[25] WEDDELL J C, KWACK J, IMOUKHUEDE P I, etal. Hemodynamic analysis in an idealized artery tree:Differences in wall shear stress between Newtonian andnon-Newtonian blood models [J]. PLoS ONE, 2015,10(4): e0124575. |