[1] |
MALDOVAN M. Sound and heat revolutions in phononics [J]. Nature, 2013, 503(7475): 209-217.
|
[2] |
PENNEC Y, DJAFARI-ROUHANI B. Fundamental properties of phononic crystal [M]//Phononic crystals. New York: Springer, 2016: 23-50.
|
[3] |
KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites [J]. Physical Review Letters, 1993, 71(13): 2022-2025.
|
[4] |
ECONOMOU E N, SIGALAS M. Stop bands for elastic waves in periodic composite materials [J]. The Journal of the Acoustical Society of America, 1994, 95(4): 1734-1740.
|
[5] |
GORISHNYY T, MALDOVAN M, ULLAL C, et al. Sound ideas [J]. Physics World, 2005, 18(12): 24-29.
|
[6] |
ELFORD D P, CHALMERS L, KUSMARTSEV F V, et al. Matryoshka locally resonant sonic crystal [J]. The Journal of the Acoustical Society of America, 2011, 130(5): 2746-2755.
|
[7] |
YANG S X, PAGE J H, LIU Z Y, et al. Ultrasound tunneling through 3D phononic crystals [J]. Physical Review Letters, 2002, 88(10): 104301.
|
[8] |
ZHU G H, SWINTECK N Z, WU S T, et al. Direct observation of the phonon dispersion of a three-dimensional solid/solid hypersonic colloidal crystal [J]. Physical Review B, 2013, 88(14): 144307.
|
[9] |
MALDOVAN M. Narrow low-frequency spectrum and heat management by thermocrystals [J]. Physical Review Letters, 2013, 110(2): 025902.
|
[10] |
KHELIF A, DJAFARIROUHANI B, VASSEUR J O, et al. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials [J]. Physical Review B, 2003, 68(2): 024302.
|
[11] |
JOANNOPOULOS J D, VILLENEUVE P R, FAN S H. Photonic crystals: Putting a new twist on light [J]. Nature, 1997, 386(6621): 143-149.
|
[12] |
MALDOVAN M. Phonon wave interference and thermal bandgap materials [J]. Nature Materials, 2015, 14(7): 667-674.
|
[13] |
ZIMAN J. Electrons and phonons the theory of transport phenomena in solids [M]. Oxford: Oxford University Press, 2001.
|
[14] |
KITTEL C. Introduction to solid state physics [M]. 8th ed. New York: John Wiley & Sons, 2005.
|
[15] |
LUCKYANOVA M N, GARG J, ESFARJANI K, et al. Coherent phonon heat conduction in superlattices [J]. Science, 2012, 338(6109): 936-939.
|
[16] |
RAVICHANDRAN J, YADAV A K, CHEAITO R, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices [J]. Nature Materials, 2014, 13(2): 168-172.
|
[17] |
SIMKIN M V, MAHAN G D. Minimum thermal conductivity of superlattices [J]. Physical Review Letters, 2000, 84(5): 927-930.
|
[18] |
ZEN N, PUURTINEN T A, ISOTALO T J, et al. Engineering thermal conductance using a two-dimensional phononic crystal [J]. Nature Communications, 2014, 5: 3435.
|
[19] |
HUSSEIN M I. Reduced Bloch mode expansion for periodic media band structure calculations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2109): 2825-2848.
|
[20] |
GO′MEZ GARC′IA P, FERNA′NDEZ-A′LVAREZ J P. Floquet-Bloch theory and its application to the dispersion curves of nonperiodic layered systems [J]. Mathematical Problems in Engineering, 2015, 2015: 475364.
|
[21] |
MOHAMADY S, RAJA AHMAD R K, MONTAZERI A, et al. Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method [J]. Advances in Acoustics and Vibration, 2009, 2009: 371297.
|
[22] |
KAFESAKI M, SIGALAS M M, GARC′IA N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials [J]. Physical Review Letters, 2000, 85(19): 4044-4047.
|
[23] |
KHELIF A, DJAFARI-ROUHANI B, VASSEUR J O, et al. Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal [J]. Physical Review B, 2002, 65(17): 174308.
|
[24] |
BERNE P. Thermal conductivity of composites: How comsol revealed an omission in a classical paper [C]// 2015 COMSOL Conference. Grenoble: COMSOL, 2015: 1-5.
|
[25] |
BILAL O R, HUSSEIN M I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves [J]. Physical Review E, 2011, 84(6): 065701.
|
[26] |
DONG H W, SU X X, WANG Y S. Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm [C]//2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. Shanghai: IEEE, 2012: 45-48.
|
[27] |
YI G L, SHIN Y C, YOON H, et al. Topology optimization for phononic band gap maximization considering a target driving frequency [J]. JMST Advances, 2019, 1(1/2): 153-159.
|