[1] |
BHARGAV P B, MOHAN V M, SHARMA A K, et al. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications [J]. Ionics, 2007, 13(6): 441-446.
|
[2] |
SRIVASTAVA N., CHANDRA A, CHANDRA S. Dense branched growth of (SCN)x and ion transport in the poly(ethyleneoxide) NH4SCN polymer electrolyte [J]. Physical Review B, Condensed Matter, 1995, 52(1): 225-230.
|
[3] |
CHOWDARI B V R, CHANDRA S, SINGH S, et al. Solid state ionics: Materials and applications [M]. Varanasi: World Scientific, 1992.
|
[4] |
KUMAR Y, HASHMI S A, PANDEY G P. Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid [J]. Solid State Ionics, 2011, 201(1): 73-80.
|
[5] |
TUHANIA P, SINGH P K, BHATTACHARYA B, et al. PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate-doped polymer electrolyte for efficient supercapacitors [J]. High Performance Polymers, 2018, 30(8): 911-917.
|
[6] |
GUPTA S, SINGH P K, BHATTACHARYA B. Low-viscosity ionic liquid-doped solid polymer electrolytes [J]. High Performance Polymers, 2018, 30(8): 986-992.
|
[7] |
DHAPOLA P S, SINGH P K, BHATTACHARYA B, et al. Electrical, thermal, and dielectric studies of ionic liquid-based polymer electrolyte for photoelectro-chemical device [J]. High Performance Polymers, 2018, 30(8): 1002-1008.
|
[8] |
SINGH D, KANJILAL D, LAXMI G, et al. Conductivity and dielectric studies of Li3+-irradiated PVP-based polymer electrolytes [J]. High Performance Polymers, 2018, 30(8): 978-985.
|
[9] |
SIYAHJANI S, ONER S, SINGH P K, et al. Highly efficient supercapacitor using single-walled carbon nanotube electrodes and ionic liquid incorporated solid gel electrolyte [J]. High Performance Polymers, 2018, 30(8): 971-977.
|
[10] |
TAO R Y, FUJINAMI T. Application of mix-salts composed of lithium borate and lithium aluminate in PEO-based polymer electrolytes [J]. Journal of Power Sources, 2005, 146(1/2): 407-411.
|
[11] |
WANG Y J, PAN Y, CHEN L S. Ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with Li1.3Al0.3Ti1.7(PO4)3 salt [J]. Materials Chemistry and Physics, 2005, 92(2/3): 354-360.
|
[12] |
DISSANAYAKE M A K L, JAYATHILAKA P A R D, BOKALAWELA R S P. Ionic conductivity of PEO9: Cu(CF3SO3)2 nano-composite solid polymer electrolyte [J]. Electrochimica Acta, 2005, 50(28): 5602-5605.
|
[13] |
LIEW C W, RAMESH S, AROF A K. Investigation of ionic liquid-based poly(vinyl alcohol) proton conductor for electrochemical double-layer capacitor [J]. High Performance Polymers, 2014, 26(6): 632-636.
|
[14] |
KADIR M F Z, MAJID S R, AROF A K. Plasticized chitosan-PVA blend polymer electrolyte based proton battery [J]. Electrochimica Acta, 2010, 55(4): 1475-1482.
|
[15] |
LIEW C W, RAMESH S, AROF A K. Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors [J]. International Journal of Hydrogen Energy, 2015, 40(1): 852-862.
|
[16] |
LIEW C W, RAMESH S, AROF A K. Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties [J]. International Journal of Hydrogen Energy, 2014, 39(6): 2953-2963.
|
[17] |
KANBARA T, INAMI M, YAMAMOTO T. New solid-state electric double-layer capacitor using poly(vinyl alcohol)-based polymer solid electrolyte [J]. Journal of Power Sources, 1991, 36(1): 87-93.
|
[18] |
EVERY H A, ZHOU F, FORSYTH M, et al. Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy [J]. Electrochimica Acta, 1998, 43(10/11): 1465-1469.
|
[19] |
HIRANKUMAR G, SELVASEKARAPANDIAN S, KUWATA N, et al. Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes [J]. Journal of Power Sources, 2005, 144(1): 262-267.
|
[20] |
DAMODARAN S, KINSELLA J E. The effects of neutral salts on the stability of macromolecules. A new approach using a protein-ligand binding system [J]. Journal of Biological Chemistry, 1981, 256(7): 3394-3398.
|
[21] |
BHARGAV P B, MOHAN V M, SHARMA A K, et al. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications [J]. Ionics, 2007, 13(6): 441-446.
|
[22] |
NIK AZIZ N A, IDRIS N K, ISA M I N. Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies [J]. International Journal of Polymer Analysis and Characterization, 2010, 15(5): 319-327.
|
[23] |
SAMSUDIN A S, KHAIRUL W M, ISA M I N. Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes [J]. Journal of Non-Crystalline Solids, 2012, 358(8): 1104-1112.
|
[24] |
SALLEH N S, AZIZ S B, et al. Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide [J]. Ionics, 2016, 22(11): 2157-2167.
|
[25] |
IQBAL S, KHATOON H, HUSSAIN PANDIT A, et al. Recent development of carbon based materials for energy storage devices [J]. Materials Science for Energy Technologies, 2019, 2(3): 417-428.
|
[26] |
BACH-TOLEDO L, HRYNIEWICZ B M, MARCHESI L F, et al. Conducting polymers and composites nanowires for energy devices: A brief review [J]. Materials Science for Energy Technologies, 2020, 3: 78-90.
|
[27] |
MAHESHWARI P H. Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation [J]. Materials Science for Energy Technologies, 2019, 2(3): 490-502.
|
[28] |
ANJANA P M, BINDHU M R, RAKHI R B. Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage [J]. Materials Science for Energy Technologies, 2019, 2(3): 389-395.
|
[29] |
EEDULAKANTI S R, GAMPALA A K, VENKATESWARA RAO K, et al. Ultrasonication assisted thermal exfoliation of graphene-tin oxide nanocomposite material for supercapacitor [J]. Materials Science for Energy Technologies, 2019, 2(3): 372-376.
|
[30] |
HUANG S J, LEE H K, KANG W H. Proton conducting behavior of a novel composite based on phosphosilicate/poly(vinyl alcohol) [J]. Journal of the Korean Ceramic Society, 2005, 42(2): 77-80.
|
[31] |
KRUMOVA M, LO′PEZ D, BENAVENTE R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol) [J]. Polymer, 2000, 41(26): 9265-9272.
|
[32] |
BENAVENTE E, SANTA ANA M A, MENDIZA′BAL F, et al. Intercalation chemistry of molybdenum disulfide [J]. Coordination Chemistry Reviews, 2002, 224(1/2): 87-109.
|
[33] |
HODGE R M, EDWARD G H, SIMON G P. Water absorption and states of water in semicrystalline poly(vinyl alcohol) films [J]. Polymer, 1996, 37(8): 1371-1376.
|
[34] |
SAAID F, RODI I, WINIE T. Effect of temperature on the transport property of PVdF-HFP-MPII-PC/DME gel polymer electrolytes [J]. AIP Conference Proceedings, 2017, 1877(1): 020006.
|
[35] |
MISHRA R, RAO K J. Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends [J]. Solid State Ionics, 1998, 106(1/2): 113-127.
|
[36] |
SINGH R, SINGH P K, TOMAR S K, et al. Synthesis, characterization, and dye-sensitized solar cell fabrication using solid biopolymer electrolyte membranes [J]. High Performance Polymers, 2016, 28(1): 47-54.
|
[37] |
AZIZ S B, HAMSAN M H, ABDULLAH R M, et al. A promising polymer blend electrolytes based on chitosan: Methyl cellulose for EDLC application with high specific capacitance and energy density [J]. Molecules, 2019, 24(13): 2503.
|
[38] |
SAMPATHKUMAR L, CHRISTOPHER SELVIN P, SELVASEKARAPANDIAN S, et al. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications [J]. Ionics, 2019, 25(3): 1067-1082.
|
[39] |
PRATAP R, SINGH B, CHANDRA S. Polymeric rechargeable solid-state proton battery [J]. Journal of Power Sources, 2006, 161(1): 702-706.
|
[40] |
XU G H, ZHENG C, ZHANG Q, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors [J]. Nano Research, 2011, 4(9): 870-881.
|
[41] |
DI FABIO A, GIORGI A, MASTRAGOSTINO M, et al. Carbon-poly(3-methylthiophene) hybrid supercapacitors [J]. Journal of the Electrochemical Society, 2001, 148(8): A845.
|
[42] |
HARSOJO, DOLOKSARIBU M, PRIHANDOKO B, et al. The effect of reduced graphene oxide on the activated carbon metal oxide supercapacitor [J]. Materials Today : Proceedings, 2019, 13: 181-186.
|
[43] |
ZHANG L L, ZHAO X, STOLLER M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors [J]. Nano Letters, 2012, 12(4): 1806-1812.
|
[44] |
PALEO A J, STAITI P, BRIGANDì A, et al. Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes [J]. Energy Storage Materials, 2018, 12: 204-215.
|
[45] |
SHEN H J, ZHANG Y, SONG X L, et al. Facile hydrothermal synthesis of Actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor [J]. Journal of Alloys and Compounds, 2019, 770: 926-933.
|
[46] |
WINTERSGILL M C, FONTANELLA J J, GREENBAUM S G, et al. D.s.c., electrical conductivity, and n.m.r. studies of salt precipitation effects in PPO complexes [J]. British Polymer Journal, 1988, 20(3): 195-198.
|
[47] |
GREENBAUM S G, PAK Y S, WINTERSGILL M C, et al. NMR, DSC, DMA, and high pressure electrical conductivity studies in PPO complexed with sodium perchlorate [J]. Journal of the Electrochemical Society, 1988, 135(1): 235-238.
|
[48] |
HU T, CHU X F, GAO F, et al. Acetone sensing properties of reduced graphene oxide-CdFe2O4 composites prepared by hydrothermal method [J]. Materials Science in Semiconductor Processing, 2015, 34: 146-153.
|
[49] |
FAUTEUX D, LUPIEN M D, ROBITAILLE C D. Phase diagram, conductivity, and transference number of PEO-NaI electrolytes [J]. Journal of the Electrochemical Society, 1987, 134(11): 2761-2767.
|