Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (5): 616-621.doi: 10.1007/s12204-019-2108-0
Previous Articles Next Articles
ZHANG Ke (张珂), LIN Tianran (林天然), JIN Xia (金霞)
Online:
2019-10-08
Published:
2019-09-27
Contact:
LIN Tianran (林天然)
E-mail: trlin@qut.edu.cn
CLC Number:
ZHANG Ke (张珂), LIN Tianran (林天然), JIN Xia (金霞) . Low Speed Bearing Fault Diagnosis Based on EMD-CIIT Histogram Entropy and KFCM Clustering[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 616-621.
[6] | PANDYA D H, UPADHYAY S H, HARSHA S P. Faultdiagnosis of rolling element bearing with intrinsic modefunction of acoustic emission data using APF-KNN [J].Expert Systems with Applications, 2013, 40(10): 4137-4145. |
[7] | FENG Z P, LIANG M, CHU F L. Recent advances intime–frequency analysis methods for machinery faultdiagnosis: A review with application examples [J]. MechanicalSystems and Signal Processing, 2013, 38(1):165-205. |
[1] | MBA D, RAO R B K N. Development of acoustic emissiontechnology for condition monitoring and diagnosisof rotating machines: bearings, pumps, gearboxes,engines, and rotating structures [J]. Shock and VibrationDigest, 2006, 38(1): 3-16. |
[2] | SMITH J D. Vibration monitoring of bearings at lowspeeds [J]. Tribology International, 1982, 15(3): 139-144. |
[8] | FENG Z P, LIANG M, ZHANG Y, et al. Faultdiagnosis for wind turbine planetary gearboxes via demodulationanalysis based on ensemble empirical modedecomposition and energy separation [J]. RenewableEnergy, 2012, 47: 112-126. |
[9] | YU K, LIN T R, TAN J W. A bearing fault diagnosistechnique based on singular values of EEMD spatialcondition matrix and Gath-Geva clustering [J]. AppliedAcoustics, 2017, 121: 33-45. |
[3] | YOSHIOKA T, FUJIWARA T. Application of acousticemission o detection of rolling bearing failure [J].ASME: Production Engineering Division Publication,1984, 14: 55-76. |
[10] | LIN T R, KIM E, TAN A C C. A practical signalprocessing approach for condition monitoring of lowspeed machinery using Peak-Hold-Down-Sample algorithm[J]. Mechanical Systems and Signal Processing,2013, 36(2): 256-270. |
[4] | MIETTINEN J, PATANIITTY P. Acoustic emissionin monitoring extremely slowly rotating rolling bearing[M]//MCINTYRE J, SLEEMAN D. Proceedingsof COMADEM’99. Oxford, UK: Coxmoor Publishing,1999: 289-297. |
[11] | TIAN P F, ZHANG L, CAO X J, et al. The applicationof EMD-CIIT lidar signal denoising method in aerosoldetection [J]. Procedia Engineering, 2015, 102: 1233-1237. |
[5] | VAN HECKE B, YOON J, HE D. Low speed bearingfault diagnosis using acoustic emission sensors [J].Applied Acoustics, 2016, 105: 35-44. |
[12] | AO H, CHENG J S, LI K L, et al. A roller bearing faultdiagnosis method based on LCD energy entropy andACROA-SVM [J]. Shock and Vibration, 2014, 2014:825825. |
[6] | PANDYA D H, UPADHYAY S H, HARSHA S P. Faultdiagnosis of rolling element bearing with intrinsic modefunction of acoustic emission data using APF-KNN [J].Expert Systems with Applications, 2013, 40(10): 4137-4145. |
[13] | AI Y T, GUAN J Y, FEI C W, et al. Fusion informationentropy method of rolling bearing fault diagnosisbased on n-dimensional characteristic parameter distance[J]. Mechanical Systems and Signal Processing,2017, 88: 123-136. |
[14] | ZHAO S F, LIANG L, XU G H, et al. Quantitativediagnosis of a spall-like fault of a rolling element bearingby empirical mode decomposition and the approximateentropy method [J]. Mechanical Systems and SignalProcessing, 2013, 40(1): 154-177. |
[7] | FENG Z P, LIANG M, CHU F L. Recent advances intime–frequency analysis methods for machinery faultdiagnosis: A review with application examples [J]. MechanicalSystems and Signal Processing, 2013, 38(1):165-205. |
[15] | ZHANG L, ZHANG L, HU J F, et al. Bearing faultdiagnosis using a novel classifier ensemble based onlifting wavelet packet transforms and sample entropy[J]. Shock and Vibration, 2016, 2016: 4805383. |
[8] | FENG Z P, LIANG M, ZHANG Y, et al. Faultdiagnosis for wind turbine planetary gearboxes via demodulationanalysis based on ensemble empirical modedecomposition and energy separation [J]. RenewableEnergy, 2012, 47: 112-126. |
[16] | ZACHARY J, IYENGAR S S, BARHEN J. Contentbased image retrieval and information theory: Ageneral approach [J]. Journal of the American Societyfor Information Science and Technology, 2001, 52(10):840-852. |
[9] | YU K, LIN T R, TAN J W. A bearing fault diagnosistechnique based on singular values of EEMD spatialcondition matrix and Gath-Geva clustering [J]. AppliedAcoustics, 2017, 121: 33-45. |
[10] | LIN T R, KIM E, TAN A C C. A practical signalprocessing approach for condition monitoring of lowspeed machinery using Peak-Hold-Down-Sample algorithm[J]. Mechanical Systems and Signal Processing,2013, 36(2): 256-270. |
[17] | TAO X M, XU J, FU Q, et al. Kernel fuzzy C-meansalgorithm based on distribution density and its applicationin fault diagnosis [J]. Journal of Vibration andShock, 2009, 28(8): 61-64 (in Chinese). |
[11] | TIAN P F, ZHANG L, CAO X J, et al. The applicationof EMD-CIIT lidar signal denoising method in aerosoldetection [J]. Procedia Engineering, 2015, 102: 1233-1237. |
[18] | LIN T R, YU K, TAN J W. Condition monitoringand fault diagnosis of roller element bearing[EB/OL]. (2017-05-31) [2018-07-20]. https://www.intechopen.com. |
[12] | AO H, CHENG J S, LI K L, et al. A roller bearing faultdiagnosis method based on LCD energy entropy andACROA-SVM [J]. Shock and Vibration, 2014, 2014:825825. |
[19] | KOPSINIS Y, MCLAUGHLIN S. Development ofEMD-based denoising methods inspired by waveletthresholding [J]. IEEE Transactions on Signal Processing,2009, 57(4): 1351-1362. |
[13] | AI Y T, GUAN J Y, FEI C W, et al. Fusion informationentropy method of rolling bearing fault diagnosisbased on n-dimensional characteristic parameter distance[J]. Mechanical Systems and Signal Processing,2017, 88: 123-136. |
[20] | FLANDRIN P, RILLING G, GONCALVES P. Empiricalmode decomposition as a filter bank [J]. IEEESignal Processing Letters, 2004, 11(2): 112-114. |
[14] | ZHAO S F, LIANG L, XU G H, et al. Quantitativediagnosis of a spall-like fault of a rolling element bearingby empirical mode decomposition and the approximateentropy method [J]. Mechanical Systems and SignalProcessing, 2013, 40(1): 154-177. |
[15] | ZHANG L, ZHANG L, HU J F, et al. Bearing faultdiagnosis using a novel classifier ensemble based onlifting wavelet packet transforms and sample entropy[J]. Shock and Vibration, 2016, 2016: 4805383. |
[16] | ZACHARY J, IYENGAR S S, BARHEN J. Contentbased image retrieval and information theory: Ageneral approach [J]. Journal of the American Societyfor Information Science and Technology, 2001, 52(10):840-852. |
[17] | TAO X M, XU J, FU Q, et al. Kernel fuzzy C-meansalgorithm based on distribution density and its applicationin fault diagnosis [J]. Journal of Vibration andShock, 2009, 28(8): 61-64 (in Chinese). |
[18] | LIN T R, YU K, TAN J W. Condition monitoringand fault diagnosis of roller element bearing[EB/OL]. (2017-05-31) [2018-07-20]. https://www.intechopen.com. |
[19] | KOPSINIS Y, MCLAUGHLIN S. Development ofEMD-based denoising methods inspired by waveletthresholding [J]. IEEE Transactions on Signal Processing,2009, 57(4): 1351-1362. |
[20] | FLANDRIN P, RILLING G, GONCALVES P. Empiricalmode decomposition as a filter bank [J]. IEEESignal Processing Letters, 2004, 11(2): 112-114. |
[1] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[2] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 269-275. |
[3] | WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 56-60. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 599
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||