[6] |
PANDYA D H, UPADHYAY S H, HARSHA S P. Faultdiagnosis of rolling element bearing with intrinsic modefunction of acoustic emission data using APF-KNN [J].Expert Systems with Applications, 2013, 40(10): 4137-4145.
|
[7] |
FENG Z P, LIANG M, CHU F L. Recent advances intime–frequency analysis methods for machinery faultdiagnosis: A review with application examples [J]. MechanicalSystems and Signal Processing, 2013, 38(1):165-205.
|
[1] |
MBA D, RAO R B K N. Development of acoustic emissiontechnology for condition monitoring and diagnosisof rotating machines: bearings, pumps, gearboxes,engines, and rotating structures [J]. Shock and VibrationDigest, 2006, 38(1): 3-16.
|
[2] |
SMITH J D. Vibration monitoring of bearings at lowspeeds [J]. Tribology International, 1982, 15(3): 139-144.
|
[8] |
FENG Z P, LIANG M, ZHANG Y, et al. Faultdiagnosis for wind turbine planetary gearboxes via demodulationanalysis based on ensemble empirical modedecomposition and energy separation [J]. RenewableEnergy, 2012, 47: 112-126.
|
[9] |
YU K, LIN T R, TAN J W. A bearing fault diagnosistechnique based on singular values of EEMD spatialcondition matrix and Gath-Geva clustering [J]. AppliedAcoustics, 2017, 121: 33-45.
|
[3] |
YOSHIOKA T, FUJIWARA T. Application of acousticemission o detection of rolling bearing failure [J].ASME: Production Engineering Division Publication,1984, 14: 55-76.
|
[10] |
LIN T R, KIM E, TAN A C C. A practical signalprocessing approach for condition monitoring of lowspeed machinery using Peak-Hold-Down-Sample algorithm[J]. Mechanical Systems and Signal Processing,2013, 36(2): 256-270.
|
[4] |
MIETTINEN J, PATANIITTY P. Acoustic emissionin monitoring extremely slowly rotating rolling bearing[M]//MCINTYRE J, SLEEMAN D. Proceedingsof COMADEM’99. Oxford, UK: Coxmoor Publishing,1999: 289-297.
|
[11] |
TIAN P F, ZHANG L, CAO X J, et al. The applicationof EMD-CIIT lidar signal denoising method in aerosoldetection [J]. Procedia Engineering, 2015, 102: 1233-1237.
|
[5] |
VAN HECKE B, YOON J, HE D. Low speed bearingfault diagnosis using acoustic emission sensors [J].Applied Acoustics, 2016, 105: 35-44.
|
[12] |
AO H, CHENG J S, LI K L, et al. A roller bearing faultdiagnosis method based on LCD energy entropy andACROA-SVM [J]. Shock and Vibration, 2014, 2014:825825.
|
[6] |
PANDYA D H, UPADHYAY S H, HARSHA S P. Faultdiagnosis of rolling element bearing with intrinsic modefunction of acoustic emission data using APF-KNN [J].Expert Systems with Applications, 2013, 40(10): 4137-4145.
|
[13] |
AI Y T, GUAN J Y, FEI C W, et al. Fusion informationentropy method of rolling bearing fault diagnosisbased on n-dimensional characteristic parameter distance[J]. Mechanical Systems and Signal Processing,2017, 88: 123-136.
|
[14] |
ZHAO S F, LIANG L, XU G H, et al. Quantitativediagnosis of a spall-like fault of a rolling element bearingby empirical mode decomposition and the approximateentropy method [J]. Mechanical Systems and SignalProcessing, 2013, 40(1): 154-177.
|
[7] |
FENG Z P, LIANG M, CHU F L. Recent advances intime–frequency analysis methods for machinery faultdiagnosis: A review with application examples [J]. MechanicalSystems and Signal Processing, 2013, 38(1):165-205.
|
[15] |
ZHANG L, ZHANG L, HU J F, et al. Bearing faultdiagnosis using a novel classifier ensemble based onlifting wavelet packet transforms and sample entropy[J]. Shock and Vibration, 2016, 2016: 4805383.
|
[8] |
FENG Z P, LIANG M, ZHANG Y, et al. Faultdiagnosis for wind turbine planetary gearboxes via demodulationanalysis based on ensemble empirical modedecomposition and energy separation [J]. RenewableEnergy, 2012, 47: 112-126.
|
[16] |
ZACHARY J, IYENGAR S S, BARHEN J. Contentbased image retrieval and information theory: Ageneral approach [J]. Journal of the American Societyfor Information Science and Technology, 2001, 52(10):840-852.
|
[9] |
YU K, LIN T R, TAN J W. A bearing fault diagnosistechnique based on singular values of EEMD spatialcondition matrix and Gath-Geva clustering [J]. AppliedAcoustics, 2017, 121: 33-45.
|
[10] |
LIN T R, KIM E, TAN A C C. A practical signalprocessing approach for condition monitoring of lowspeed machinery using Peak-Hold-Down-Sample algorithm[J]. Mechanical Systems and Signal Processing,2013, 36(2): 256-270.
|
[17] |
TAO X M, XU J, FU Q, et al. Kernel fuzzy C-meansalgorithm based on distribution density and its applicationin fault diagnosis [J]. Journal of Vibration andShock, 2009, 28(8): 61-64 (in Chinese).
|
[11] |
TIAN P F, ZHANG L, CAO X J, et al. The applicationof EMD-CIIT lidar signal denoising method in aerosoldetection [J]. Procedia Engineering, 2015, 102: 1233-1237.
|
[18] |
LIN T R, YU K, TAN J W. Condition monitoringand fault diagnosis of roller element bearing[EB/OL]. (2017-05-31) [2018-07-20]. https://www.intechopen.com.
|
[12] |
AO H, CHENG J S, LI K L, et al. A roller bearing faultdiagnosis method based on LCD energy entropy andACROA-SVM [J]. Shock and Vibration, 2014, 2014:825825.
|
[19] |
KOPSINIS Y, MCLAUGHLIN S. Development ofEMD-based denoising methods inspired by waveletthresholding [J]. IEEE Transactions on Signal Processing,2009, 57(4): 1351-1362.
|
[13] |
AI Y T, GUAN J Y, FEI C W, et al. Fusion informationentropy method of rolling bearing fault diagnosisbased on n-dimensional characteristic parameter distance[J]. Mechanical Systems and Signal Processing,2017, 88: 123-136.
|
[20] |
FLANDRIN P, RILLING G, GONCALVES P. Empiricalmode decomposition as a filter bank [J]. IEEESignal Processing Letters, 2004, 11(2): 112-114.
|
[14] |
ZHAO S F, LIANG L, XU G H, et al. Quantitativediagnosis of a spall-like fault of a rolling element bearingby empirical mode decomposition and the approximateentropy method [J]. Mechanical Systems and SignalProcessing, 2013, 40(1): 154-177.
|
[15] |
ZHANG L, ZHANG L, HU J F, et al. Bearing faultdiagnosis using a novel classifier ensemble based onlifting wavelet packet transforms and sample entropy[J]. Shock and Vibration, 2016, 2016: 4805383.
|
[16] |
ZACHARY J, IYENGAR S S, BARHEN J. Contentbased image retrieval and information theory: Ageneral approach [J]. Journal of the American Societyfor Information Science and Technology, 2001, 52(10):840-852.
|
[17] |
TAO X M, XU J, FU Q, et al. Kernel fuzzy C-meansalgorithm based on distribution density and its applicationin fault diagnosis [J]. Journal of Vibration andShock, 2009, 28(8): 61-64 (in Chinese).
|
[18] |
LIN T R, YU K, TAN J W. Condition monitoringand fault diagnosis of roller element bearing[EB/OL]. (2017-05-31) [2018-07-20]. https://www.intechopen.com.
|
[19] |
KOPSINIS Y, MCLAUGHLIN S. Development ofEMD-based denoising methods inspired by waveletthresholding [J]. IEEE Transactions on Signal Processing,2009, 57(4): 1351-1362.
|
[20] |
FLANDRIN P, RILLING G, GONCALVES P. Empiricalmode decomposition as a filter bank [J]. IEEESignal Processing Letters, 2004, 11(2): 112-114.
|