[1] |
LAPOTE G. The traveling salesman problem: Anoverview of exact and approximate algorithms [J]. EuropeanJournal of Operational Research, 1992, 59(2):231-247.
|
[2] |
JIANG H, SUN W C, REN Z L, et al. Evolving hardand easy traveling salesman problem instances: Amulti-objective approach [C]//Proceedings of the 10thInternational Conference on Simulated Evolution andLearning. Dunedin, New Zealand: Springer InternationalPublishing, 2014: 216-227.
|
[3] |
URRUTIA S, MILAN′ES A, L?KKETANGEN A. Adynamic programming based local search approach forthe double traveling salesman problem with multiplestacks [J]. International Transactions in OperationalResearch, 2015, 22(1): 61-75.
|
[4] |
JOZEFOWIEZ N, LAPORTE G, SEMET F. A genericbranch-and-cut algorithm for multiobjective optimizationproblems: Application to the multilabel travelingsalesman problem [J]. INFORMS Journal on Computing,2012, 24(4): 554-564.
|
[5] |
QU D P, TU H, FAN T S. Performance analysis of localoptimization algorithms in traveling salesman problem[J]. Advanced Materials Research, 2014, 846/847:1364-1367.
|
[6] |
ZHANG J W. Hybrid particle swarm optimizationalgorithm for large-scale travelling salesman problem[J]. Applied Mechanics and Materials, 2014,513/514/515/516/517: 1773-1778.
|
[7] |
CONTRERAS-BOLTON C, PARADA V. Automaticcombination of operators in a genetic algorithm tosolve the traveling salesman problem [J]. PLoS ONE,2015, 10(9): e0137724.
|
[8] |
YANG J Y, DING R F, ZHANG Y, et al. An improvedant colony optimization (I-ACO) method forthe quasi travelling salesman problem (quasi-TSP) [J].International Journal of Geographical Information Science,2015, 29(9): 1534-1551.
|
[9] |
ZHOU Y Q, LUO Q F, CHEN H, et al. A discrete invasiveweed optimization algorithm for solving travelingsalesman problem [J]. Neurocomputing, 2015, 151(3):1227-1236.
|
[10] |
GARLIA M B. Particle swarm optimization withan improved exploration-exploitation balance[C]//Proceedings of 51st Midwest Symposium onCircuits and Systems. [s.l.]: IEEE, 2008: 759-762.
|
[11] |
YANG C G, TU X Y, CHEN J. Algorithm of marriagein honey bees optimization based on the wolfpack search [C]//Proceedings of International Conferenceon Intelligent Pervasive Computing. [s.l.]: IEEE,2007: 462-467.
|
[12] |
WU H S, ZHANG F M, WU L S. New swarm intelligencealgorithm: Wolf pack algorithm [J]. SystemsEngineering and Electronics, 2013, 35(11): 2430-2438(in Chinese).
|
[13] |
OUYANG X X, ZHOU Y Q, LUO Q F, et al. A noveldiscrete cuckoo search algorithm for spherical travelingsalesman problem [J]. Applied Mathematics & InformationSciences, 2013, 7(2): 777-784.
|
[14] |
PASTI R, DE CASTRO L N. A neuro-immunenetwork for solving the traveling salesman problem[C]//Proceedings of IEEE International Joint Conferenceon Neural Network Proceedings. Vancouver,Canada: IEEE, 2006: 3760-3766.
|
[15] |
MASUTTI T A S, DE CASTRO L N. A self-organizingneural network using ideas from the immune system tosolve the traveling salesman problem [J]. InformationSciences, 2009, 179(10): 1454-1468.
|
[16] |
WU J Q, OUYANG A J. A hybrid algorithm of ACOand delete-cross method for TSP [C]//Proceedings of2012 International Conference on Industrial Controland Electronics Engineering. [s.l.]: IEEE, 2012: 1694-1696.
|
[17] |
DONGGF,GUOWW, TICKLE K. Solving the travelingsalesman problem using cooperative genetic antsystems [J]. Expert Systems with Applications, 2012,39: 5006-5011.
|
[18] |
PEKER M, SEN B, KUMRU P Y. An efficient solvingof the traveling salesman problem: The ant colonysystem having parameters optimized by the Taguchimethod [J]. Turkish Journal of Electrical Engineering& Computer Science, 2013, 21: 2015-2036.
|
[19] |
G¨UND¨UZ M, KIRAN M S, ¨OZCEYLAN E. A hierarchicapproach based on swarm intelligence to solvethe traveling salesman problem [J]. Turkish Journal ofElectrical Engineering & Computer Sciences, 2015, 23:103-117.
|