Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (1): 41-47.doi: 10.1007/s12204-019-2039-9
Previous Articles Next Articles
DONG Ruyi (董如意), WANG Shengsheng *(王生生), WANG Guangyao (王光耀), WANG Xinying (王新颖)
Online:
2019-02-28
Published:
2019-01-28
Contact:
WANG Shengsheng *(王生生
E-mail:wss@jlu.edu.cn
CLC Number:
DONG Ruyi (董如意), WANG Shengsheng *(王生生), WANG Guangyao (王光耀), WANG Xinying (王新颖) . Hybrid Optimization Algorithm Based on Wolf Pack Search and Local Search for Solving Traveling Salesman Problem[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 41-47.
[1] | LAPOTE G. The traveling salesman problem: Anoverview of exact and approximate algorithms [J]. EuropeanJournal of Operational Research, 1992, 59(2):231-247. |
[2] | JIANG H, SUN W C, REN Z L, et al. Evolving hardand easy traveling salesman problem instances: Amulti-objective approach [C]//Proceedings of the 10thInternational Conference on Simulated Evolution andLearning. Dunedin, New Zealand: Springer InternationalPublishing, 2014: 216-227. |
[3] | URRUTIA S, MILAN′ES A, L?KKETANGEN A. Adynamic programming based local search approach forthe double traveling salesman problem with multiplestacks [J]. International Transactions in OperationalResearch, 2015, 22(1): 61-75. |
[4] | JOZEFOWIEZ N, LAPORTE G, SEMET F. A genericbranch-and-cut algorithm for multiobjective optimizationproblems: Application to the multilabel travelingsalesman problem [J]. INFORMS Journal on Computing,2012, 24(4): 554-564. |
[5] | QU D P, TU H, FAN T S. Performance analysis of localoptimization algorithms in traveling salesman problem[J]. Advanced Materials Research, 2014, 846/847:1364-1367. |
[6] | ZHANG J W. Hybrid particle swarm optimizationalgorithm for large-scale travelling salesman problem[J]. Applied Mechanics and Materials, 2014,513/514/515/516/517: 1773-1778. |
[7] | CONTRERAS-BOLTON C, PARADA V. Automaticcombination of operators in a genetic algorithm tosolve the traveling salesman problem [J]. PLoS ONE,2015, 10(9): e0137724. |
[8] | YANG J Y, DING R F, ZHANG Y, et al. An improvedant colony optimization (I-ACO) method forthe quasi travelling salesman problem (quasi-TSP) [J].International Journal of Geographical Information Science,2015, 29(9): 1534-1551. |
[9] | ZHOU Y Q, LUO Q F, CHEN H, et al. A discrete invasiveweed optimization algorithm for solving travelingsalesman problem [J]. Neurocomputing, 2015, 151(3):1227-1236. |
[10] | GARLIA M B. Particle swarm optimization withan improved exploration-exploitation balance[C]//Proceedings of 51st Midwest Symposium onCircuits and Systems. [s.l.]: IEEE, 2008: 759-762. |
[11] | YANG C G, TU X Y, CHEN J. Algorithm of marriagein honey bees optimization based on the wolfpack search [C]//Proceedings of International Conferenceon Intelligent Pervasive Computing. [s.l.]: IEEE,2007: 462-467. |
[12] | WU H S, ZHANG F M, WU L S. New swarm intelligencealgorithm: Wolf pack algorithm [J]. SystemsEngineering and Electronics, 2013, 35(11): 2430-2438(in Chinese). |
[13] | OUYANG X X, ZHOU Y Q, LUO Q F, et al. A noveldiscrete cuckoo search algorithm for spherical travelingsalesman problem [J]. Applied Mathematics & InformationSciences, 2013, 7(2): 777-784. |
[14] | PASTI R, DE CASTRO L N. A neuro-immunenetwork for solving the traveling salesman problem[C]//Proceedings of IEEE International Joint Conferenceon Neural Network Proceedings. Vancouver,Canada: IEEE, 2006: 3760-3766. |
[15] | MASUTTI T A S, DE CASTRO L N. A self-organizingneural network using ideas from the immune system tosolve the traveling salesman problem [J]. InformationSciences, 2009, 179(10): 1454-1468. |
[16] | WU J Q, OUYANG A J. A hybrid algorithm of ACOand delete-cross method for TSP [C]//Proceedings of2012 International Conference on Industrial Controland Electronics Engineering. [s.l.]: IEEE, 2012: 1694-1696. |
[17] | DONGGF,GUOWW, TICKLE K. Solving the travelingsalesman problem using cooperative genetic antsystems [J]. Expert Systems with Applications, 2012,39: 5006-5011. |
[18] | PEKER M, SEN B, KUMRU P Y. An efficient solvingof the traveling salesman problem: The ant colonysystem having parameters optimized by the Taguchimethod [J]. Turkish Journal of Electrical Engineering& Computer Science, 2013, 21: 2015-2036. |
[19] | G¨UND¨UZ M, KIRAN M S, ¨OZCEYLAN E. A hierarchicapproach based on swarm intelligence to solvethe traveling salesman problem [J]. Turkish Journal ofElectrical Engineering & Computer Sciences, 2015, 23:103-117. |
[1] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[2] | LIU Ning (刘宁), YUAN Zhenming* (袁贞明). Spontaneous Language Analysis in Alzheimer’s Disease:Evaluation of Natural Language Processing Technique for Analyzing Lexical Performance [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[3] | JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
[4] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[5] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[6] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[7] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[8] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[9] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[10] | YU Xiaokang (俞小康), YE Jia (叶佳), WU Chunxiang (吴春祥), MA Guohong∗ (马国红). Effect of Cu Addition on the Microstructure and Mechanical Properties of U-MIG Welds on Galvanized Steel Sheets [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[11] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[12] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[13] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[14] | ZHANG Yun, Lü Runyan, CAI Yunze . Missile-Target Situation Assessment Model Based on Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 561-568. |
[15] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 484
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||