Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (2): 297-307.doi: 10.1007/s12204-018-1938-5
Previous Articles Next Articles
FANG Yan (方艳)
Online:
2018-04-01
Published:
2018-06-19
Contact:
FANG Yan (方艳)
E-mail:yiffanyfang@163.com
CLC Number:
FANG Yan (方艳). Feature Selection, Deep Neural Network and Trend Prediction[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 297-307.
[1] KANDEL S, STAMBAUGH, R F. Modeling expectedstock returns for long and short horizons [OL]. (2000-10-19) [2016-01-15]. http://ideas.repec.org/plfth/pennfi/42-88.html. [2] CAMPBELL J Y, LO A W C, MACKINLAY A C.The econometrics of financial markets [M]. New Jersey:Princeton University Press, 1997. [3] CAMPBELL J Y, YOGO M. Efficient tests of stockreturn predictability [J]. Journal of Financial Economics,2006, 81(1): 27-60. [4] ANG A, BEKAERT G. Stock return predictability: Isit there? [J]. Review of Financial Studies, 2007, 20(3):651-707. [5] GARDNER E S. Exponential smoothing: The state ofthe art—Part II [J]. International Journal of Forecasting,2006, 22(4): 637-666. [6] FRANSES P H, DIJK D, LUCAS A. Short patchesof outliers, ARCH and volatility modelling [J]. AppliedFinancial Economics, 2004, 14(4): 221-231. [7] BALABAN E, BAYAR A, FAFF R W. Forecastingstock market volatility: Further international evidence[J]. The European Journal of Finance, 2006, 12(2):171-188. [8] ATSALAKIS G S, VALAVANIS K P. Surveying stockmarket forecasting techniques—Part II: Soft computingmethods [J]. Expert Systems with Applications,2009, 36(3): 5932-5941. [9] HINTON G E. Learning multiple layers of representation[J]. Trends in Cognitive Sciences, 2007, 11(10):428-434. [10] BENGIO Y. Learning deep architectures for AI [J].Foundations and Trends? in Machine Learning, 2009,2(1): 1-127. [11] BABA N, SUTO H. Utilization of artificial neural networksand the TD-learning method for constructing intelligentdecision support systems [J]. European Journalof Operational Research, 2000, 122(2): 501-508. [12] BURKHOLDER T J, LIEBER R L. Stepwise regressionis an alternative to splines for fitting noisy data[J]. Journal of Biomechanics, 1996, 29(2): 235-238. [13] CHATFIELD C. What is the ‘best’method of forecasting?[J]. Journal of Applied Statistics, 1988, 15(1):19-38. [14] ZHANG G P. Time series forecasting using a hybridARIMA and neural network model [J]. Neurocomputing,2003, 50: 159-175. [15] HADAVANDI E, SHAVANDI H, GHANBARI A. Integrationof genetic fuzzy systems and artificial neuralnetworks for stock price forecasting [J]. Knowledge-Based Systems, 2010, 23(8): 800-808. [16] WANG J J, WANG J Z, ZHANG Z G, et al. Stockindex forecasting based on a hybrid model [J]. Omega,2012, 40(6): 758-766. [17] LEE T H, YANG W. Granger-causality in quantilesbetween financial markets: Using copula approach [J].International Review of Financial Analysis, 2014, 33:70-78. [18] LYNCH M. The Investment Clock. Special report,2004. [19] LO A W, MAMAYSKY H, WANG J. Foundations oftechnical analysis: Computational algorithms, statisticalinference, and empirical implementation [J]. TheJournal of Finance, 2000, 55(4): 1705-1770. [20] ZORIN A, BORISOV A. Modelling Riga Stock ExchangeIndex using neural networks [C]// Proceedingsof the International Conference Traditions and Innovationsin Sustainable Development of Society. Rezekne,Latvia: Information Technologies, 2002: 312-320. |
[1] | GUO Weicheng,LI Beizhi,YANG Jianguo,ZHOU Qinzhi. Monitoring of Grinding Signals and Development of Wheel Wear Prediction Model [J]. Journal of Shanghai Jiaotong University, 2019, 53(12): 1475-1481. |
[2] | SHEN Jian,HU Jie,MA Jin,QI Jin,ZHU Guoniu,PENG Yinghong. Case Acquisition in Biological Domain Based on Text Mining [J]. Journal of Shanghai Jiaotong University, 2018, 52(8): 954-960. |
[3] | SONG Jie (宋杰), XIAO Liang* (肖亮), LIAN Zhichao (练智超). Robust Segmentation, Shape Fitting and Morphology Computation of High-Throughput Cell Nuclei [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(2): 180-187. |
[4] | HE Tao,HU Jie,XIA Peng,GU Chaochen. Feature Selection of Emg Signal Based on ReliefF Algorithm and Genetic Algorithm [J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 204-208. |
[5] | SU Bai-hua1 (苏柏桦), WANG Ying-lin2* (王英林). Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 143-148. |
[6] | WANG Fei (王飞), LI Cai-hong* (李彩虹), WANG Jing-shan (王景山),XU Jiao (徐娇), LI Lian (李廉). A Two-Stage Feature Selection Method for Text Categorization by Using Category Correlation Degree and Latent Semantic Indexing [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(1): 44-50. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 552
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||