[1] BERENGER J P. A perfectly matched layer for the absorptionof electromagnetic waves [J]. Journal of ComputationalPhysics, 1994, 114(2): 185-200.
[2] HU F Q. On absorbing boundary conditions for linearizedeuler equations by a perfectly matched layer[J]. Journal of Computational Physics, 1996, 129(1):201-219.
[3] TAM C K W, AURIANULT L, CAMBULI F. Perfectlymatched layer as an absorbing bound- ary conditionfor the linearized euler equations in open and ducteddomains [J]. Journal of Computational Physics, 1998,144(1): 213-234.
[4] KREISS H. Initial boundary value problems for hyperbolicsystems [J]. Communications on Pure and AppliedMathematics, 1970, 23(3): 277-298.
[5] ENGQUIST B, MAJDA A J. Absorbing boundaryconditions for the numerical simulation of waves [J].Mathematics of Computation, 1977, 31(139): 629-651.
[6] GUSTAFSSON B, OLIGER J. Stable boundary approximationsfor implicit time discretizations for gasdynamics [J]. SIAM Journal on Scientific and StatisticalComputing, 1982, 3(4): 408-421.
[7] HIGDON R L. Absorbing boundary conditions fordifference approximations to the multi-dimensionalwave equation [J]. Mathematics of Computation, 1986,47(176): 437-459.
[8] THOMPSON K W. Time dependent boundary conditionsfor hyperbolic systems [J]. Journal of ComputationalPhysics, 1987, 68(1): 1-24.
[9] THOMPSON K W. Time-dependent boundary conditionsfor hyperbolic systems, II [J]. Journal of ComputationalPhysics, 1990, 89(2): 439-461.
[10] POINSOT T J, LELE S K. Boundary conditions for directsimulations of compressible viscous flows [J]. Journalof Computational Physics, 1992, 101(1): 104-129.
[11] NICOUD F. Defining wave amplitude in characteristicboundary conditions [J]. Journal of ComputationalPhysics, 1999, 149(2): 418-422.
[12] VALORANI M, FAVINI B. On the numerical integrationof multidimensional, initial boundary value problemsfor the euler equations in quasilinear form [J].Numerical Methods for Partial Differential Equations,1998, 14(6): 781-814.
[13] SUTHERLAND J C, KENNEDY C A. Improvedboundary conditions for viscous, reacting, compressibleflows [J]. Journal of Computational Physics, 2003,191(2): 502-524.
[14] PROSSER R. Improved boundary conditions for thedirect numerical simulation of turbulent subsonicflows. I. inviscid flows [J]. Journal of ComputationalPhysics, 2005, 207(2): 736-768.
[15] YOO C S, WANG Y, TROUV′E A, et al. Characteristicboundary conditions for direct simulations of turbulentcounterflow flames [J]. Combustion Theory andModelling, 2005, 9(4): 617-646.
[16] YOO C S, IM H G. Characteristic boundary conditionsfor simulations of compressible reacting flowswith multi-dimensional, viscous and reaction effects[J]. Combustion Theory and Modelling, 2007, 11(2):259-286.
[17] LODATO G, DOMINGO P, VERVISCH L. Threedimensionalboundary conditions for direct and largeeddysimulation of compressible viscous flows [J]. Journalof Computational Physics, 2008, 227(10): 5105-5143.
[18] COUSSEMENT A, GICQUEL O, CAUDAL J, et al.Three-dimensional boundary conditions for numericalsimulations of reactive compressible flows with complexthermochemistry [J]. Journal of ComputationalPhysics, 2012, 231(17): 5571-5611.
[19] TODA H B, CABRIT O, TRUFFIN K, et al. Assessmentof subgrid-scale models with a large-eddysimulation-dedicated experimental database: The pulsatileimpinging jet in turbulent cross-flow [J]. Physicsof Fluids, 2014, 26(7): 1760-1765.
[20] JIN T, LUO K, LU S, et al. DNS investigation on flamestructure and scalar dissipation of a supersonic liftedhydrogen jet flame in heated coflow [J]. InternationalJournal of Hydrogen Energy, 2013, 38(23): 9886-9896.
[21] LEE D, HUH K Y. DNS analysis of propagation speedand conditional statistics of turbulent premixed flamein a planar impinging jet [J]. Proceedings of the CombustionInstitute, 2011, 33(1): 1301-1307.
[22] LAI J, CHAKRABORTY N. Effects of lewis numberon head on quenching of turbulent premixed flames: Adirect numerical simulation analysis [J]. Flow Turbulenceand Combustion, 2016, 96(2): 279-308.
[23] LAI J, CHAKRABORTY N. Statistical behavior ofscalar dissipation rate in head-on quenching of turbulentpremixed flames: A direct numerical simulationanalysis [J]. Combustion Science and Technology, 2016,188(2): 250-276.
[24] RUDY D H, STRIKWERDA J C. A nonreflecting outflowboundary condition for subsonic navier-stokes calculations[J]. Journal of Computational Physics, 1980,36(1): 55-70.
[25] POINSOT T, VEYNANTE D. Theoretical and numericalcombustion [M]. PA: RT Edwards, Inc., 2005.
[26] JENKINS K W, CANT R S. Direct numerical simulationof turbulent ame kernels [C]//Recent Advancesin DNS and LES. Berlin: Springer Netherlands, 1999:3583-3604.
[27] RUTLAND C J, CANT R S. Turbulent transport inpremixed ames [C]//In Proceedings of the SummerProgram, Stanford University/NASA Ames. San Francisco:Centre for Turbulence Research, 1994: 75-94.
[28] CHAKRABORTY N, CANT R S. Effects of lewis numberon flame surface density transport in turbulent premixedcombustion [J]. Combustion and Flame, 2011,158(9): 1768-1787.
[29] CHAKRABORTY N, LIPANTNIKOV A N. Statisticsof conditional uid velocity in the corrugated flameletsregime of turbulent premixed combustion: A directnumerical simulation study [J]. Journal of Combustion,2011: 1-13.
[30] WRAY A A. Minimal storage time-advancementschemes for spectral methods [C]//NASA Ames ResearchReport. Moffett Field: NASA Ames ResearchCenter, 1991: 1-9.
[31] CHAKRABOTY N, CANT R S. Unsteady effects ofstrain rate and curvature on turbulent premixed flamesin an inflowoutflow configuration [J]. Combustion andFlame, 2004, 137(1): 129-147.
[32] CHAKRABOTY N, CANT R S. A priori analysis ofthe curvature and propagation terms of the flame surfacedensity transport equation for large eddy simulation[J]. Physics of Fluids, 2007, 19: 363-371.
|