Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System
Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4
(1. Institute for Automatic Control and Complex Systems, University of Duisburg-Essen, Duisburg 47057, Germany;
2. Baotou Vocational & Technical Collage, Baotou 014040, Inner Mongolia, China;
3. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4. Department of Electrical Engineering, Faculty of Engineering Burapha University, Chonburi 20131, Thailand)
(1. Institute for Automatic Control and Complex Systems, University of Duisburg-Essen, Duisburg 47057, Germany;
2. Baotou Vocational & Technical Collage, Baotou 014040, Inner Mongolia, China;
3. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4. Department of Electrical Engineering, Faculty of Engineering Burapha University, Chonburi 20131, Thailand)
Published:2015-08-05
Contact:
LUO Hao (罗 浩), YANG Xu (杨 旭)(The two authors contributed equally to this work.)
E-mail: hao.luo@uni-due.de, yangxu@ustb.edu.cn
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4. Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 489-494.
[1] Burton T, Jenkins N, Sharpe D, et al. Wind energy handbook [M]. Chichester: John Wiley & Sons, 2011.[2] Wei X, VerhaegenM, Van Den Engelen T. Sensor fault diagnosisof windturbinesfor fault tolerant [C]//Proceedings of the 17th World Congress, The International Federation of Automatic Control. Seoal, Korea:IFAC, 2008: 3222-3227.[3] Ding S X, Zhang P, Naik A, et al. Subspace method aided data-driven design of fault detection and isolation systems [J]. Journal of Process Control, 2009,19(9): 1496-1510.[4] Ding S X. Model-based fault diagnosis techniques [M].Berlin: Springer-Verlag, 2013.[5] Ding S X. Data-driven design of fault diagnosis and fault-tolerant control systems [M]. Berlin: Springer-Verlag, 2014.[6] Ding S X, Yang Y, Zhang Y, et al. Data-driven realizations of kernel and image representations and their application to fault detection and control system design [J]. Automatica, 2014, 50(10): 2615-2623.[7] Blesa J, Rotondo D, Puig V, et al. FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors [J]. Control Engineering Practice, 2014, 24: 138-155.[8] Miller S. Wind turbine model [EB/OL].(2015-03-17). http: // www.mathworks.de / matlabcentral/fileexchange/ 25752- wind-turbine-model, 2013.