Journal of shanghai Jiaotong University (Science) ›› 2015, Vol. 20 ›› Issue (4): 489-494.doi: 10.1007/s12204-015-1655-2
Previous Articles Next Articles
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4
Online:2015-08-29
Published:2015-08-05
Contact:
LUO Hao (罗 浩), YANG Xu (杨 旭)(The two authors contributed equally to this work.)
E-mail: hao.luo@uni-due.de, yangxu@ustb.edu.cn
CLC Number:
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4. Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 489-494.
| [1] Burton T, Jenkins N, Sharpe D, et al. Wind energy handbook [M]. Chichester: John Wiley & Sons, 2011. [2] Wei X, VerhaegenM, Van Den Engelen T. Sensor fault diagnosisof windturbinesfor fault tolerant [C]//Proceedings of the 17th World Congress, The International Federation of Automatic Control. Seoal, Korea:IFAC, 2008: 3222-3227. [3] Ding S X, Zhang P, Naik A, et al. Subspace method aided data-driven design of fault detection and isolation systems [J]. Journal of Process Control, 2009,19(9): 1496-1510. [4] Ding S X. Model-based fault diagnosis techniques [M].Berlin: Springer-Verlag, 2013. [5] Ding S X. Data-driven design of fault diagnosis and fault-tolerant control systems [M]. Berlin: Springer-Verlag, 2014. [6] Ding S X, Yang Y, Zhang Y, et al. Data-driven realizations of kernel and image representations and their application to fault detection and control system design [J]. Automatica, 2014, 50(10): 2615-2623. [7] Blesa J, Rotondo D, Puig V, et al. FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors [J]. Control Engineering Practice, 2014, 24: 138-155. [8] Miller S. Wind turbine model [EB/OL].(2015-03-17). http: // www.mathworks.de / matlabcentral/fileexchange/ 25752- wind-turbine-model, 2013. |
| [1] | WANG Hongxin, XU Degang, ZHOU Kaiwen, LI Linwen, WEN Xin. Data-Driven Method of Modeling Sparse Flow Field Data [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 684-690. |
| [2] | Li Songyang, Chen Wenbo, Wan Heng. Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 270-279. |
| [3] | LIU Shu, ZHOU Min, GAO Yuanhai, XU Xiaoyuan, YAN Zheng. A Data-Driven Method Embedded with Topological Information for Voltage-Power Sensitivity Estimation in Distribution Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 855-862. |
| [4] | TANG Zhen, HAO Lihua, FENG Jing. Online Estimation of Power Shortage in Power Systems Driven by Local Frequency Measurement Data [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 403-411. |
| [5] | ZHANG Hengrui. Demand-Driven Materials Design [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 93-94. |
| [6] | SHAN Rui (山蕊), JIANG Lin (蒋林), WU Haoyue (吴昊玥), HE Feilong (贺飞龙), LIU Xinchuang (刘新闯). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 511-521. |
| [7] | LI Yong, ZHANG Mengjun, QIU Dong, FAN Yunfeng . Design and Development of Data-Driven Augmented Reality Electronic Sand Table for Command and Control System [J]. Air & Space Defense, 2021, 4(2): 27-33. |
| [8] | XU Qiaoning,AI Qinglin,DU Xuewen,LIU Yi. An Integrated Model-Based and Data-Driven Method for Early Fault Detection of a Ship Rudder Electro-Hydraulic Servo System [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 451-464. |
| Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
Full text 255
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Abstract 742
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||