[1] Cnnic. The 28th statistical report on the Internet development in China [R]. Beijing, China: CNNIC, 2011 (in Chinese).[2] Mei Q, Shen X, Zhai C. Automatic labeling of multinomial topic models [C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007: 490-499.[3] Blei D M, Ng A Y, Jordan M I, et al. Latent dirichlet allocation [J]. Journal of Machine Learning Research, 2003, 3: 993-1022.[4] Nallapati R, Feng A, Peng F, et al. Event threading within news topics [C]//Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management. Washington, DC, USA: ACM, 2004: 446-453.[5] Feng A, Allan J. Finding and linking incidents in news [C]//Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management. Lisboa, Portugal: ACM, 2007: 821-830.[6] Wang X, McCallum A. Topics over time: A non-Markov continuous-time model of topical trends [C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006: 424-433.[7] Mei Q, Liu C, Su H, et al. A probabilistic approach to spatiotemporal theme pattern mining on weblogs [C]//Proceedings of the 15th International Conference on World Wide Web. Edinburgh, Scotland: ACM, 2006: 533-542.[8] Mei Q, Zhai C. A mixture model for contextual text mining [C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006: 649-655.[9] Wang C, Zhang M, Ma S, et al. Automatic online news issue construction in web environment [C]//Proceeding of the 17th International Conference on World Wide Web. Beijing, China: ACM, 2008: 457-466.[10] Xu R, Peng W, Xu J, et al. On-line new event detection using time window strategy [C]//The Proceeding of International Conference on Machine Learning and Cybernetics (ICMLC). Guilin, China: IEEE, 2011: 1932-1937.[11] Shen D, Yang Q, Sun J, et al. Thread detection in dynamic text message streams [C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, WA, USA: ACM, 2006: 35-42.[12] Kim J, Candan K, D¨onderler M. Topic segmentation of message hierarchies for indexing and navigation support [C]//Proceedings of the 14th International Conference on World Wide Web. Chiba, Japan: ACM, 2005: 322–331.[13] Fung G P C, Yu J X, Liu H, et al. Time-dependent event hierarchy construction [C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007: 300-309.[14] Trieschnigg D, Kraaij W. Hierarchical topic detection in large digital news archives [C]//Proceedings of the 5th Dutch Belgian Information Retrieval Workshop. Utrecht, The Netherlands: University of Twente, 2005: 55-62.[15] Kleinberg J. Bursty and hierarchical structure in streams [J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397.[16] Turney P. Coherent keyphrase extraction via web mining [C]//Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03). Acapulco, Mexico: Morgan Kaufmann Publishers, 2003.[17] Ong T, Chen H, Sung W, et al. Newsmap: A knowledge map for online news [J]. Decision Support Systems, 2005, 39(4): 583-597.[18] Chang J, Boyd-Graber J, Gerrish S, et al. Reading tea leaves: How humans interpret topic models [C]//Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: Curran Associates Inc., 2009.[19] Pantel P, Ravichandran D. Automatically labeling semantic classes [C]//Proceedings of HLT/NAACL. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004: 321-328.[20] Yang Y, Pedersen J. A comparative study on feature selection in text categorization [C]//Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97). Palo Alto, California, USA: AAAI Press, 1997: 412-420.[21] Gabrilovich E, Markovitch S. Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization with encyclopedic knowledge [C]//Proceedings of the 21st National Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI Press, 2006: 1301-1306.[22] Carmel D, Roitman H, Zwerdling N. Enhancing cluster labeling using wikipedia [C]//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston, Massachusetts, USA: ACM, 2009: 139-146.[23] Lau J H, Newman D, Karimi S, et al. Best topic word selection for topic labelling [C]//Coling 2010: Posters. Beijing, China: Coling 2010 Organizing Committee, 2010: 605-613.[24] Lau J, Grieser K, Newman D, et al. Automatic labelling of topic models [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 1536-1545.[25] Song Y, Pan S, Liu S, et al. Topic and keyword re-ranking for LDA-based topic modeling [C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2009: 1757-1760.[26] Blei D, Lafferty J. Visualizing topics with multiword expressions [EB/OL]. (2009-07-06) [2011-07-07]. http://arxiv.org/abs/0907.1013.[27] Wilson A T, Chew P A. Term weighting schemes for latent dirichlet allocation [C]//Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010: 465-473.[28] Wang X, McCallum A, Wei X. Topical n-grams: Phrase and topic discovery, with an application to information retrieval [C]//Seventh IEEE International Conference on Data Mining. Omaha, NE, USA: IEEE, 2007: 697-702. |