J Shanghai Jiaotong Univ Sci ›› 2011, Vol. 16 ›› Issue (3): 329-332.doi: 10.1007/s12204-011-1154-z
• Articles • Previous Articles Next Articles
Dong P.; Zhang P.-C.; Li R.-W.
Published:
Abstract: The temperature and stress fields in beryllium during high speed cutting process were studied by employing a thermo-mechanically coupled finite element method (FEM). The results show that the temperatures in beryllium increase only a little during the cutting process. Both of the residual stresses for along and normal to the cutting direction are tensile stresses in the surface of beryllium after cutting. The cutting force and thrust force are about 280 and -250 kN/m at the steady stage, respectively. The main effects of coolant on the cutting process are to decrease the friction coefficient and heat between the tool and the workpiece, so to reduce the temperature, but almost no effects are made for stress. This study is helpful to enhance the understanding for stress formation and optimize the process parameters of beryllium. © Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2011.
Key words: Beryllium; Cutting; Finite element method (FEM); Stress field; Temperature field
Dong P.; Zhang P.-C.; Li R.-W.. Numerical simulation on temperature and stress fields in beryllium during cutting process[J]. J Shanghai Jiaotong Univ Sci, 2011, 16(3): 329-332.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/sjtu_en/EN/10.1007/s12204-011-1154-z
https://xuebao.sjtu.edu.cn/sjtu_en/EN/Y2011/V16/I3/329