J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 773-779.doi: 10.1007/s12204-022-2466-x
徐良坤1, 2,薛晗2,金永兴1,周世波2
接受日期:
2021-09-21
出版日期:
2024-09-28
发布日期:
2024-09-28
XU Liangkun1,2 (徐良坤), XUE Han2∗ (薛晗), JIN Yongxing1 (金永兴), ZHOU Shibo2 (周世波)
Accepted:
2021-09-21
Online:
2024-09-28
Published:
2024-09-28
摘要: 确保灯浮标位置正确,为船舶航行提供尽可能准确的位置信息,是航海保障部门的职责之一。如果灯浮标位置偏差过大,向船舶发送错误的助航信息,将影响船舶的航行安全,同时也会增大管理部门的压力。因此,掌握灯浮标的偏移特性对灯浮标的维护和提高灯浮标的助航效能具有重要意义。灯浮标位置的核密度估计能够直观地反应灯浮标位置的空间分布特征以及浮标位置的密集区域。为提高计算速度和核密度估计的精度,降低核密度估计过于平滑的风险,采用分数阶递归神经网络优化核密度估计带宽的方法,设计了一种自适应带宽核密度估计器。
中图分类号:
徐良坤1, 2, 薛晗2, 金永兴1, 周世波2. 基于神经网络优化多元 KDE 带宽的浮标空间信息分析[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 773-779.
XU Liangkun1, 2 (徐良坤), XUE Han2∗ (薛晗), JIN Yongxing1 (金永兴), ZHOU Shibo2 (周世波). Neural Network Optimization of Multivariate KDE Bandwidth for Buoy Spatial Information[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 773-779.
[1] XIA Y D, DING Q, JING N J, et al. An enhanced fault detection method for centrifugal chillers using kernel density estimation based kernel entropy component analysis [J]. International Journal of Refrigeration, 2021, 129: 290-300. [2] DAI J H, LIU Y, CHEN J L. Feature selection via max-independent ratio and min-redundant ratio based on adaptive weighted kernel density estimation [J]. Information Sciences, 2021, 568: 86-112. [3] HE Y Y, FAN H L, LEI X H, et al. A runoff probability density prediction method based on B-spline quantile regression and kernel density estimation [J]. Applied Mathematical Modelling, 2021, 93: 852-867. [4] HUANG L, LIU Y, WEN Y Q, et al. Inland waterway sparse AIS trajectory estimation method based on navigation experience [J]. Journal of Dalian Maritime University, 2017, 43(3): 7-13 (in Chinese). [5] LIU H, LI W F. Automatic recognition of marine traffic flow with AIS data [J]. Navigation of China, 2016, 39(4): 87-90 (in Chinese). [6] WU T J, CHEN C F, CHEN H Y. A variable bandwidth selector in multivariate kernel density estimation [J]. Statistics & Probability Letters, 2007, 77(4):462-467. [7] KERM P. Adaptive kernel density estimation [J]. The Stata Journal: Promoting Communications on Statistics and Stata, 2003, 3(2): 148-156. [8] XU Z Q, XU C, HU J, et al. Robust resistance to noise and outliers: Screened Poisson Surface Reconstruction using adaptive kernel density estimation [J]. Computers & Graphics, 2021, 97: 19-27. [9] LI Z W, HE P. Data-based optimal bandwidth for kernel density estimation of statistical samples [J]. Communications in Theoretical Physics, 2018, 70(6): 728. [10] EL HEDA K, LOUANI D. Optimal bandwidth selection in kernel density estimation for continuous time dependent processes [J]. Statistics & Probability Letters, 2018, 138: 9-19. [11] KRAML J, HOFER F, QUOIKA P K, et al. Xentropy: A parallelized kernel density estimator with automated bandwidth selection to calculate entropy [J]. Journal of Chemical Information and Modeling,2021, 61(4): 1533-1538. [12] JIN H S, HE Y L, CHANG X Y, et al. An improved kernel density estimator with adaptive variable bandwidth [J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(6): 709-717 (in Chinese). [13] JING X G, GE L G, SUN W. A clustering algorithm for sea buoy trajectory based on Gaussian mixture model [J]. Modern Computer, 2017(36): 3-5, 8 (in Chinese). [14] LU J. A buoy position correction algorithm [J]. Ship Electronic Engineering, 2021(5): 143-145 (in Chinese). [15] XU J L, GAO S, GE Y, et al. Analysis of wave effect on drifting trajectory of float at sea [J]. Journal of Institute of Disaster Prevention, 2017, 19(2): 75-79 (in Chinese). [16] SILVERMAN B W. Density estimation for statistics and data analysis [M]. New York: Chapman and Hall/CRC, 1986. [17] RU Y. Algorithm of kernel density estimation of kernel function [D]. Harbin: Harbin University of Science and Technology, 2016 (in Chinese). |
[1] | 韩 允, 赵新芳, 马永犇. 航空声纳浮标自噪声分析[J]. 海洋工程装备与技术, 2024, 11(1): 77-81. |
[2] | 舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰. 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022, 56(5): 564-575. |
[3] | 秦艺超, 黄礼敏, 王骁, 马学文, 段文洋, 郝伟. 基于人工神经网络的自航浮标测波方法可行性[J]. 上海交通大学学报, 2022, 56(4): 498-505. |
[4] | 郭鹏军, 张睿, 高关根, 许斌. 基于相对速度和位置辅助的无人机编队协同导航[J]. 上海交通大学学报, 2022, 56(11): 1438-1446. |
[5] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
[6] | 袁丁,孙慧贤,闫云斌,全厚德. 节点本振误差对分布式发射波束形成性能的影响[J]. 上海交通大学学报, 2020, 54(1): 92-99. |
[7] | 杨臻明1,岳继光1,王晓保2,萧蕴诗1. 基于独立模型的非线性时间序列多步超前预测[J]. 上海交通大学学报(自然版), 2013, 47(10): 1626-1631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||