J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1202-1210.doi: 10.1007/s12204-022-2467-9

• • 上一篇    

基于自适应核密度估计算法的F/A-XX战斗机统计特性分析

傅莉1,姜冠武1,黄全军2   

  1. (1. 沈阳航空航天大学 自动化学院,沈阳110136;2. 沈阳飞机设计研究所,沈阳110034)
  • 收稿日期:2021-04-02 接受日期:2021-08-20 出版日期:2024-11-28 发布日期:2024-11-28

Statistical Characteristics Analysis Based on F/A-XX Fighter Using Adapative Kernel Density Estimation Algorithm

FU Li1∗ (傅莉), JIANG Guanwu1 (姜冠武), HUANG Quanjun2 (黄全军)   

  1. (1. School of Automation, Shenyang Aerospace University, Shenyang 110136, China; 2. Shenyang Aircraft Design and Research Institute, Shenyang 110034, China)
  • Received:2021-04-02 Accepted:2021-08-20 Online:2024-11-28 Published:2024-11-28

摘要: 第六代战斗机具有优越的隐身性能,但传统的核密度估计(KDE)在处理复杂雷达截面(RCS)波动特性时难以满足精度要求。为了解决这一问题,研究了F/A-XX隐身战斗机的核密度估计算法。针对现有固定带宽算法精度不足的问题,提出了一种基于最小二乘交叉验证和误差平方积分准则的自适应核密度估计算法(AKDE)。同时,根据优化后的带宽得到自适应雷达截面密度估计。最后,仿真验证了自适应带宽雷达截面密度估计算法的估计精度比传统算法提高50%以上。基于所提出的算法(即AKDE),更准确地获取了所考虑战斗机的统计特征,并分析了AKDE算法在求解雷达截面小于1 m2的累积分布函数估计方面的显著优势。

关键词: 雷达截面, 核密度估计, 统计特性

Abstract: The sixth-generation fighter has superior stealth performance, but for the traditional kernel density estimation (KDE), precision requirements are difficult to satisfy when dealing with the fluctuation characteristics of complex radar cross section (RCS). To solve this problem, this paper studies the KDE algorithm for F/AXX stealth fighter. By considering the accuracy lack of existing fixed bandwidth algorithms, a novel adaptive kernel density estimation (AKDE) algorithm equipped with least square cross validation and integrated squared error criterion is proposed to optimize the bandwidth. Meanwhile, an adaptive RCS density estimation can be obtained according to the optimized bandwidth. Finally, simulations verify that the estimation accuracy of the adaptive bandwidth RCS density estimation algorithm is more than 50% higher than that of the traditional algorithm. Based on the proposed algorithm (i.e., AKDE), statistical characteristics of the considered fighter are more accurately acquired, and then the significant advantages of the AKDE algorithm in solving cumulative distribution function estimation of RCS less than 1 m2 are analyzed.

中图分类号: